Jahresbericht 2005

Fachgebiet
Datenverarbeitung in der Konstruktion

Prof. Dr.-Ing. R. Anderl
Fachgebiet
Datenverarbeitung in der Konstruktion (DiK)

Prof. Dr.-Ing. R. Anderl
Technische Universität Darmstadt
Petersenstraße 30
D-64287 Darmstadt

Telefon: (0 61 51) 16-60 01 / Telefax: (0 61 51) 16-68 54
E-Mail: anderl@dik.tu-darmstadt.de
www.dik.maschinenbau.tu-darmstadt.de
Inhaltsverzeichnis

Inhaltsverzeichnis ... 3
Vorwort ... 7
Lehrangebot im Grundstudium 10
 Grundlagen der elektronischen Datenverarbeitung 11
 Programmiersprachen und Techniken 12
 Einführung in das rechnergestützte Konstruieren (CAD) 13
Lehrangebot im Hauptstudium 14
 Produktdatentechnologie A: CAD-Systeme und CAx-
 Prozessketten ... 15
 Produktdatentechnologie B - Produktdatenmanagement ... 17
 Produktdatentechnologie C: Produkt- und Prozessmodellierung
 ... 18
 Tutorium Advanced CAx - Freiformflächenmodellierung mit
 CATIA V5 .. 20
 Tutorium - Arbeiten mit dem 3D-CAD-System Unigraphics... 22
 Tutorium Collaborative Engineering – Grundlagen mit Windchill
 ... 23
 Grundlagen des CAE/CAD .. 24
 ADP – Virtuelle Produktentwicklung, Rechnerunterstützte
 Prozesskette von der Idee bis zum realen Prototypen 25
 ADP – Virtuelle Produktentwicklung im Umfeld design- und
 stylingorientierter Produkte .. 26
 ADP – Collaborative Engineering ... 27
DiK – Statistik Lehre 2005 28
Forschung .. 29
 Digitale Werkzeugmaschine .. 30
 EU-Forschungsprojekt Sustainable Production Technologies.....
 of Emission Reduced Light-weight car concepts
 (SuperLightCar) ... 32
 Förderierte Integration multidisziplinärer Produktmodelle für die
 mechatronische Systementwicklung (FIP) 34
 Global Engineering Excellence ... 36
 learn2I - Neue e-learning Methoden und Werkzeuge zur
 Softwaresystemausbildung ... 39
 PACE – Partners for the Advancement of Collaborative
 Engineering Education .. 40
 PACE – vom Design zum Prototypen 42
PACE – Collaborative Engineering .. 43
PACE – Virtuelle Werkzeugmaschine 45
PACE – Virtuelle Produktentstehung (Teilbericht Virtuelle Brennstoffzelle) ... 47
ProSTEP iViP Verein Projekt - Gruppe Collaborative Project Management (CPM) ... 49
ProSTEP iViP Verein Projektgruppe CPV 51
ProSTEP iViP Verein Projektgruppe SIMPDM 53
Prozesskette CAD-NC auf der Basis von Gussrohteildaten 55
Sonderforschungsbereich 666 Integrale Blechbauweisen höherer Verzweigungsordnung - Entwicklung, Fertigung, Bewertung .. 56
Sonderforschungsbereich 666 Teilprojekt A4 - Modellierungsfunktionen ... 57
Sonderforschungsbereich 666 Teilprojekt A5 - Informationsmodell .. 58
Transferbereich 55 C5 – Life Cycle Design auf Basis von Standardsoftwaresystemen .. 59
TUD-Ultramarathon 2005 .. 61

Dissertationen .. 120
Veröffentlichungen .. 121
Mitarbeiter 2005 ... 123
Preface .. 66

Courses offered in basic studies 68
Basics of Data Processing .. 69
Programming languages and techniques 70
Introduction to Computer Aided Design (CAD) 71

Courses offered in the main course 72
Product Data Technology A - CAD systems and CAx process series ... 73
Product Data Technology B - Product data management 75
Product Data Technology C - Product and Process Modelling 76
Tutorial Advanced CAx Freeform modelling with CATIA V5 78
Tutorial – Working with the 3D-CAD-System Unigraphics 79
Tutorial Collaborative Engineering - Windchill Basics 80
Principles of CAE/CAD .. 81
ADP – Virtual Product Development, Computer Aided Process Chain from Idea to Real Prototypes .. 82
ADP – Virtual Product Development within the Scope of Design and Styling Oriented Products ... 83
ADP – Collaborative Engineering .. 84

DiK - Statistics Study 2005 85

Research .. 86
Digital Machine Tool .. 87
EU-Research Project Sustainable Production Technologies of Emission Reduced Light-weight car concepts (SuperLightCar) ... 89
Federated Integration of multi-disciplinary Product Models for the development of mechatronic systems (FIP) ... 91
Global Engineering Excellence .. 93
learn2! – New concepts and tools in Software-Training 96
PACE – Partners for the Advancement of Collaborative Engineering Education .. 97
PACE – from Styling to Prototyping 99
PACE – Collaborative Engineering 100
PACE – Virtual Machine Tool .. 102
PACE – Virtual Product Development (Partial report Virtual Fuel Cell) ... 104
ProSTEP iViP Association Projects Group Collaborative Project Management „CPM“ ... 106
ProSTEP iViP Association Project CPV 108
ProSTEP iViP Association Project Group SIMPDM 110
Process chain CAD-NC on the basis of casting product data 112
Collaborative Research Center 666 Integral Sheet Metal Design with Higher Order Bifurcations - (Design, Manufacturing, Evaluation) ... 113
Collaborative Research Center 666 Subproject A4 - modeling techniques ... 114
Collaborative Research Center 666 Subproject A5 - Development of an information model ... 115
Transfer-Unit 55 C5 – Life Cycle Design based on E-Business Solutions .. 117
TUD-Ultramarathon 2005 .. 119

Doctor Theses ... 120
Publications .. 121
Staff 2005 .. 123
Vorwort

Das Fachgebiet Datenverarbeitung in der Konstruktion leistet seinen Beitrag in der universitären Lehre und Forschung auf dem Gebiet der Informationsverarbeitung im Maschinenbau. Die Aktivitäten des DiK werden durch seine Aufgabenbereiche in

- der Lehre im Grund- und Hauptstudium und
- der grundlagen- und anwendungsorientierten Forschung repräsentiert.

In der universitären Lehre wurden am DiK so viele Studierende wie noch nie ausgebildet. Im Grundstudium bzw. im Bachelorprogramm wurden insgesamt mehr als 1400 Prüfungen in den Fächern Grundlagen der elektronischen Datenverarbeitung und Einführung in das rechnerunterstützte Konstruieren (CAD) abgenommen. Im Hauptstudium bzw. im Masterprogramm fanden ca. 330 Prüfungen statt.

Im Jahr 2005 wurden auch neue Initiativen für innovative Forschungsthemen in den vier Kompetenzbereichen

- Methoden zur Informationsmodellierung,
- Virtuelle Produktentwicklung,
- Verteiltes und kooperatives Arbeiten und
- CAX-Labor

gestartet.

Schwerpunkt liegt dabei insbesondere in der Erforschung und Anwendung von Feature-basierten, parametrischen und wissensbasierten 3D-CAD-Systemen für die interdisziplinäre Entwicklung von Produkten.

Neu eingeweiht wurde unser CAx-Labor, in dem nun neue, rechnerunterstützte Methoden zum Produktdesign erforscht und entwickelt werden. In diesem Zusammenhang spielt das Wechselspiel zwischen digitalen Produktdesign und realen Entwürfen, insbesondere realen Prototypen eine zentrale Rolle.

Im Jahr 2005 wurde im Rahmen der PACE (Partners for the Advancement of Collaborative Engineering) Partnerschaft wieder ein Advanced Design Project mit den amerikanischen Universitäten Virginia Tech und Howard University sowie der mexikanischen Universität ITSEM (Monterrey) durchgeführt, bei dem Vorlesungen über die Videokonferenztechnik live von und nach USA und Mexiko übertragen wurden.

Ganz besonders freuen wir uns, dass wir im Jahr 2005 die folgenden Preise gewonnen haben:

- Herausragendes e-Teaching, Preis der Carlo und Karin Giersch Stiftung,
- Preis für Verdienste (Erfolge) in der akademischen Lehre für die Veranstaltung „Transatlantische Maschinenbauvorlesung Product Data Management“, Preis der Vereinigung von Freunden der Technischen Universität Darmstadt e.V.,
- PLM Innovation Award, Preis der Fa. UGS,
- ProSTEP-iViP Challenge, PLM Services for Mechatronics, Preis des ProSTEP-iViP Vereins e.V. und
- Wanderpokal für den Sieg beim TUD-Marathonlauf.

Persönlich hat mich auch besonders bewegt, dass ich von Virginia Tech (Virginia Polytechnic Institute and State University) zum Adjunct Professor im Mechanical Engineering Department ernannt wurde.
Mein besonderer Dank gilt allen Mitarbeitern des DiK, die mit ihrer Motivation und ihrem engagierten Einsatz die Erfolge des Jahres 2005 ermöglichten.

Im Dezember 2005

[Signature]

Prof. Dr.-Ing. R. Anderl
Lehrangebot im Grundstudium

Das Lehrangebot im Grundstudium umfasst, begleitet von intensiven Übungen, Vorlesungen zur Einführung in die Methoden der Datenverarbeitung. Die Vorlesungen sind inhaltlich auf die Tätigkeitsfelder der zukünftigen Ingenieure ausgerichtet. Eingebunden ist das Lehrangebot in die ersten beiden Semester und besteht aus

1. Semester: Vorlesung Grundlagen der elektronischen Datenverarbeitung (GEDV)
Übung Programmiersprachen und -techniken (PST)

2. Semester: Vorlesung Einführung in das rechner-gestützte Konstruieren (CAD)
(mit begleitenden Übungen)

Grundlagen der elektronischen Datenverarbeitung

Der Inhalt und Lehrplan der Vorlesung „Grundlagen der elektronischen Datenverarbeitung“ ist auf die Anforderungen des Maschinenbaus an die Datenverarbeitung ausgelegt. Es werden die für den Maschinenbau relevanten Themen der heutigen Datenverarbeitung behandelt. Im Rahmen des Kurses werden ausgewählte Kapitel der technischen, praktischen und angewandten Informatik vermittelt, die zur methodischen und effektiven Anwendung sowie dem grundlegenden Verständnis der EDV im Ingenieuralltag eine unbedingte Voraussetzung bilden.

Ein Schwerpunkt des Inhaltes liegt in der Vorstellung des Softwarelebenszyklus, der die Grundlage der methodischen, objektorientierten Softwareentwicklung darstellt. Im Rahmen der vorlesungsbegleitenden Übung „Programmiersprachen und Techniken“ werden die dargestellten Themengebiete anhand praktischer Beispiele vertieft.

Lernziele des Kurses:
- Beherrschung der mathematischen und technischen Grundlagen der EDV,
- Fähigkeit zur Entwicklung von Datenstrukturen und Algorithmen,
- Fähigkeit zur Entwicklung objektorientierter Software,
- Kenntnisse über die Hardware elektronischer Rechenanlagen und verteilter Systeme,
- Verständnis des Zusammenhangs zwischen Betriebssystemen und Anwendungssoftware und
- Kenntnis der verschiedenen Anwendungssysteme.

Ansprechpartner: Dipl.-Ing. Daniel Spieß
spiess@dik.tu-darmstadt.de
Programmiersprachen und Techniken

Weitere Schwerpunkte sind die methodische Softwareentwicklung, Planung und Umsetzung von Algorithmen und die Programmierung graphischer Benutzerschnittstellen.

Der Kurs schließt mit einer zweiwöchigen Hausarbeit ab, die in Teams zu je vier Studenten zu bearbeiten ist. Bei einem entsprechenden Ergebnis der Hausarbeit kann die Note in GEDV angehoben werden (siehe Folienskript zu PST für nähere Informationen).

Der Inhalt der Klausur zu GEDV ist thematisch in ca. 40% PST-Inhalte und 60% GEDV-Inhalte gegliedert. Eine besondere Herausforderung im Wintersemester 2004/2005 bestand in der, im Vergleich zu früheren Jahrgängen, sehr hohen Anzahl an Studienanfängern von ca. 710 Studenten, die dennoch mit großem Erfolg das Ausbildungsprogramm des Fachgebietes DiK durchlaufen konnten.

Im Rahmen der TUD-Online-Initiative wurde der Kurs erstmalig vollständig in Form eines Onlinekurses angeboten.

Ansprechpartner: Dipl.-Ing. Daniel Spieß
spiess@dik.tu-darmstadt.de
Einführung in das rechnergestützte Konstruieren (CAD)

In der Vorlesung und der zugehörigen Übung werden die Grundlagen des dreidimensionalen Konstruierens an CAD-Arbeitsplätzen vorgestellt und dessen Einordnung in den Ablauf zur Lösung von Konstruktionsaufgaben getroffen. Dabei werden im Rahmen der Lösungsfindung die dreidimensionale geometrische Bauteilbeschreibung, die Abbildung von Gestaltungsabsichten, die Bildung von Produktstrukturen sowie der Einsatz und Zugriff auf Norm- und Zukaufteile erlernt.

Die gefundenen Lösungen müssen auf unterschiedliche Arten dargestellt und dokumentiert werden, z. B. durch das Ableiten von normgerechten Technischen Zeichnungen aus dem 3D-CAD-Modell. Sämtliche Unterlagen zu Vorlesung und Übung werden digital bereitgestellt, wodurch die eigenständige Nutzung der Werkzeuge aus dem Bereich der Informationstechnologie gefördert wird.

Ansprechpartner: Orkun Yaman, M. Sc.
yaman@dik.tu-darmstadt.de
Dipl.-Ing Marc Bierwerth
bierwerth@dik.tu-darmstadt.de
Lehrangebot im Hauptstudium

Das Lehrangebot für das Hauptstudium Maschinenbau ist so ausgelegt, dass es interessierten Studierenden die Möglichkeit bietet, die Themen der Datenverarbeitung im Produktentwicklungsprozess weiter zu vertiefen und sich hierin zu qualifizieren. Dieses Lehrangebot spricht Studierende ab dem 5. Semester an und umfasst die folgenden Themen:

Vorlesungen:
- Produktdatentechnologie A
 (CAD-Systeme und CAx Prozessketten)
- Produktdatentechnologie B
 (Produktdatenmanagement)
- Produktdatentechnologie C
 (Produkt- und Prozessmodellierung)

Tutorien:
- Freiformflächenmodellierung mit CATIA V5
- Arbeiten mit dem 3D-CAD-System Unigraphics
- Collaborative Engineering - Grundlagen mit Windchill

ADPs:
- Virtuelle Produktentwicklung – Rechner-unterstützte Prozesskette von der Idee bis zum realen Prototypen
- Virtuelle Produktentwicklung im Umfeld design- und stylingorientierter Produkte

Produktdatentechnologie A: CAD-Systeme und CAx-Prozessketten

In der Vorlesung Produktdatentechnologie A werden die Grundlagen der modernen Produktdatentechnologie vermittelt. Hierbei stehen insbesondere der Produktmodellgedanke und die Handhabung des zur vollständigen Produktbeschreibung notwendigen Produktdatenmodells im Vordergrund. Das didaktische Konzept beruht darauf, den StudentInnen nach der Vorstellung der mathematischen und informations-technischen Grundlagen eines CAD-Systems, methodische Konzepte ebenso wie die umfangreichen Funktionen der CAD-Systeme theoretisch zu vermitteln, als auch die Weiterverwendung der durch CAD-Systeme erzeugten Daten zu demonstrieren. Die Vorlesung PDT A hat dabei folgende Lernziele:

- Verständnis der Zusammenhänge: Integriertes Produktmodell, Produktinformationen, CAD-Systeme, CAx-Prozessketten,
- Kenntnisse unterschiedlicher Modelle der rechnerinternen Beschreibung von Produktinformationen,
- Kenntnisse rechnerunterstützter Methoden zur Konzeption, Konstruktion, Optimierung, Darstellung, Fertigungsvorbereitung und Dokumentation von Produkten und
- Verständnis des Zusammenwirkens der DV-Systeme innerhalb von Prozessketten.

Insbesondere werden im Laufe der Vorlesung folgende Themen im Detail angesprochen:

- Das integrierte Produktmodell mit einer Trennung und Definition der Bergriffe Produktddefinition, Produktrepräsentation und Produktpräsentation,
- Die mathematischen Grundlagen der in den CAD-Systemen eingesetzten Geometrieelemente (1D-3D),
- Einführung in die in CAD-Systemen gebräuchlichen Geometriemodelle (1D-3D), mit Fokus auf die Volumenmodelle,
- Verschiedene Arten und Verwendungszwecke der Produktpresentation mit weiterführenden Informationen z. B. zur Farbtheorie,
- Rechnerunterstützung im Produktentwicklungsprozess und

Ein weiteres Kernelement der Vorlesung ist die Vorstellung der wichtigsten CAD-Prozessketten der Produktentstehung. Diese werden anhand repräsentativer Beispiele von der Produktkonzeption bis hin zum Herstellungsprozess
analysiert und diskutiert. Der Schwerpunkt liegt dabei auf den folgenden CAx-Prozessketten:

- CAD-Digital Mock-Up (DMU),
- CAD-Berechnung (Finite-Elemente-Methode / FEM),
- CAD-Simulation (Mehrkörpersimulation),
- CAD-Technische Produkt Dokumentation (TPD),
- CAD-Rapid Prototyping (RPT) und
- CAD-Virtual /Augmented Reality (VR /AR).

Die Prozesskette CAD-Arbeitsvorbereitung wurde, beginnend mit der Konstruktion des CAD-Modells im 3D-CAD-System, über die Ableitung der NC-kodierten Verfahrenwege der Werkzeugmaschine bis zur realen Herstellung an einer mehrachsigen Fräsmaschine eingehend demonstriert.

Ein Besuch des Instituts für graphische Datenverarbeitung der Fraunhofer Gesellschaft zum Thema Virtual bzw. Augmented Reality, eine NC-Maschinenvorführung am Fachgebiet für Produktionsmanagement, Technologie und Werkzeugmaschinen (PTW) sowie Praxisvorträge verschiedener Industrievertrreter runden dieses Lernangebot ab.

Ansprechpartner: Dipl.-Wirtsch.-Ing. Thomas Rollmann rollmann@dik.tu-darmstadt.de
Produktdatentechnologie B - Produktdatenmanagement

Beispiel eines Freigabe-Workflows

Lernziele:

- Verständnis der Bedeutung von Produktdatenmanagementsystemen und der Zusammenhänge zwischen diesen, dem Integrierten Produktmodell und Workflow-Managementsystemen,
- Kenntnisse der Basistechnologien der Produktdatenmanagementsysteme,
- Verständnis der organisatorischen Voraussetzungen und
- Kenntnisse über die Struktur von Produktdatenmanagementsystemen.

Ansprechpartner: Dipl.-Wirtsch.-Ing. Pamela Stöcker
stoecker@dik.tu-darmstadt.de
Produktdatentechnologie C: Produkt- und Prozessmodellierung

Besonderer Wert wird innerhalb der Vorlesung darauf gelegt, dass die erworbenen, theoretischen Kenntnisse anhand von praktischen Beispielen und kleineren Übungen vertieft werden.

Lernziele:

- Verständnis der Zusammenhänge zwischen Funktionen, Daten und Prozessmodellierung,
- Kenntnisse über den Nutzen der Modellierungstechniken für Geschäftsprozessoptimierungen,
- Kenntnisse über das Produktmodell, wie es in ISO 10303 (STEP) spezifiziert ist und
- Kenntnisse über die Umsetzung von Produkt- und Prozessmodellen in industrielle Anwendungen.

Ansprechpartner: Dipl.-Ing. Jens Malzacher
malzacher@dik.tu-darmstadt.de
Tutorium Advanced CAX – Freiformflächenmodellierung mit CATIA V5

Insbesondere die Erfahrungen aus der Freiformflächenmodellierung können auch auf andere 3D-CAD-Softwaresysteme übertragen werden.

Ansprechpartner: Dipl.-Wirts.-Ing. Michael Thel
thel@dik.tu-darmstadt.de
Tutorium – Arbeiten mit dem 3D-CAD-System Unigraphics

Im Tutorium zum Arbeiten mit 3D-CAD-Systemen wird die Anwendung methodischer Vorgehensweisen zur Erzeugung von komplexen Bauteilen und Baugruppen mit dem parametrischen 3D-CAD-System Unigraphics vermittelt. Daneben werden kooperative Arbeitstechniken erprobt, da ein besonderes Augenmerk auf die Gruppenarbeit gelegt wird. So erzeugt der Einzelne Einzelteile nach methodischer Vorgehensweise in CAD. Die Gruppe als Ganzes ist jedoch verantwortlich für eine sinnvolle Produktstruktur, die damit einhergehende Integration der Einzelteile zum Gesamtprodukt und die Arbeitsteilung.

Ansprechpartner: Dipl.-Ing. Jens Malzacher
malzacher@dik.tu-darmstadt.de
Orkun Yaman, M. Sc.
yaman@dik.tu-darmstadt.de
Tutorium Collaborative Engineering - Grundlagen mit Windchill

Erstellung der neuen Schulungsunterlagen

Zum Beispiel für die Erforschung und Entwicklung neuer Methoden und Werkzeuge für Bereiche wie das Produktmanagement, das Design-Management oder für die Produktreifegradermittlung wird Windchill bereits innerhalb von Projekten am DiK als effektive Integrationsplattform eingesetzt.

Ansprechpartner: Dipl.-Ing. Alain Pfouga Bopounco pfouga@dik.tu-darmstadt.de
Dipl.-Ing. Jürgen Rambo rambo@dik.tu-darmstadt.de
Dipl.-Inform. Zhenyu Wu wu@dik.tu-darmstadt.de
Grundlagen des CAE/CAD

Die „Grundlagen des CAE/CAD I“ wird jeweils abschnittsweise von Herrn Prof. Anderl, Herrn Prof. von Stryk, Herrn Prof. Huss und Herrn Prof. Encarnação gehalten. Die Lehrveranstaltung ist Pflichtfach für den Studiengang Computational Engineering (Bachelor). Die Lehrveranstaltungen wenden sich auch an die Studierenden der Fachbereiche Maschinenbau und Informatik (Bachelor und Master).

„Grundlagen des CAE/CAD I“ fand im Sommersemester 2005 statt. Folgende Themenbereiche wurden jeweils von den genannten Professoren behandelt:

- Prof. Anderl – Einführung CAE/CAD, Architektur, Geometrische Modellierung,
- Prof. von Stryk – Modellierung, Berechnungsmethoden und –verfahren,
- Prof. Huss – Modellierung, Simulation, Implementierungsvarianten und
- Prof. Encarnação – Virtual Reality, Augmented Reality.

Der Themenbereich von Herrn Prof. Anderl umfasste insbesondere die folgenden Punkte:

- Einführung in die CAD/CAE-Technologie,
- unterschiedliche Modelle der rechnerinternen Beschreibung von Produktinformationen,
- Produktdefinition, -repräsentation und -präsentation,
- Geometrische Modellierung / Linien-, Flächen- und Volumenmodelle,
- Feature-basierte Modellierung und
- Parametrische Modellierung sowie Modellierung mit Constraints

Konstruktionsmodell und FEM-Modell

Ansprechpartner: Dipl.-Wirtsch.-Ing. Michael Thel
thel@dik.tu-darmstadt.de
ADP - Virtuelle Produktentwicklung, Rechnerunterstützte Prozesskette von der Idee bis zum realen Prototypen

In dem Advanced Design Project wurde die Prozesskette von der Idee bis zum realen Prototypen innerhalb des neu eingerichteten CA-Labors am Fachgebiet DiK in einem Projektteam von vier Studierenden analysiert, realisiert und beschrieben. In dem entwickelten Prototyp eines neuen Aufsatzwerkzeuges für das bereits im CAD-Kurs eingesetzte Multitool wurden dabei insbesondere funktionale, ergonomische und ästhetische Aspekte berücksichtigen. In der Prozesskette zur Erstellung des Prototyps kamen dabei die im CA-Labor vorhandene 3D-Digitalisierungsanlage der Firma Steinbichler, die Software Catia V5 zur Flächenrückführung und CAD-Modellierung sowie die Rapid Prototyping Anlage Dimension der Firma Stratasys zum Einsatz.

Prozessschritte vom Originalmodell zum neu entwickelten Prototypen

Die Ergebnisse des ADPs stellen die Grundlage für die Analyse und Entwicklung von Methoden und Werkzeugen zur „Rechnerunterstützten Produktentwicklung ergonomie- und designorientierter Produkte“ dar.

Ansprechpartner: Dipl.-Ing. Jürgen Rambo
rambo@dik.tu-darmstadt.de
ADP – Virtuelle Produktentwicklung im Umfeld design- und stylingorientierter Produkte

Als CAD-Systeme wurde Catia V5 verwendet und anhand des Beispiels der Sohlenfläche und der Strukturelemente des Sportschuhs a³Megaride von adidas wurden diese Methoden dann veranschaulicht und validiert.

Strukturelemente einen Sportschuhs

Ansprechpartner: Dipl.-Ing. Jürgen Rambo
rambo@dik.tu-darmstadt.de

In räumlich und zeitlich verteilten Teams nutzten die Studenten an den vier Standorten Instrumente des Projektmanagements und Collaborative Engineering, z. B. zur Kooperation und zum Datenaustausch zwischen den Standorten.

Studenten bei der Zusammenarbeit an unterschiedlichen Standorten

Ansprechpartner: Dipl.-Ing. Arndt Ufer
ufer@dik.tu-darmstadt.de
Abgelegte Prüfungen

<table>
<thead>
<tr>
<th>Prüfungen</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Datenverarbeitung</td>
<td>600</td>
</tr>
<tr>
<td>Grundlagen CAE/CAD</td>
<td>720</td>
</tr>
<tr>
<td>Programmiersprachen und -techniken</td>
<td>380</td>
</tr>
<tr>
<td>Einführung in das rechnergestützte Konstruieren (CAD)</td>
<td>600</td>
</tr>
<tr>
<td>Produktdatentechnologie</td>
<td>305</td>
</tr>
<tr>
<td>Tutorien Arbeiten mit 3D-CAD-Systemen</td>
<td>40</td>
</tr>
<tr>
<td>ADP</td>
<td>15</td>
</tr>
<tr>
<td>Studien- und Diplomarbeiten, Konstruktive Entwürfe</td>
<td>32</td>
</tr>
</tbody>
</table>
Forschung

Hinter der heute eher konservativ anmutenden Fachgebietsbezeichnung „Datenverarbeitung in der Konstruktion“ verbirgt sich ein oft auf den ersten Blick nicht in seinem vollen Umfang erkennbares Wissenschaftsgebiet, welches sich heute mit einem großen Spektrum vielfältiger Forschungsaufgaben rund um die rechnergestützte Produktentwicklung befasst.

Der Begriff der Konstruktion im Maschinenbau steht ferner heute für den Gesamtprozess der virtuellen Produktschöpfung, nicht nur mehr für das zeichnerische norm- und funktionsgerechte Abbilden der angestrebten Produktgestalt auf Papier, da es die modernen CAx-Technologien heute erlauben, durchgängig rechnergestützt Produkte von ihrem ersten Formgebungsvorschlag bis hin zu ihrem rechnergestützt getesteten virtuellen serienreifen Prototyp zu entwickeln.

Aus dieser Sichtweise heraus haben sich in den vergangenen Jahren drei Forschungsschwerpunkte am DiK ergeben: die Informationsmodellierung mit der Blickrichtung gezielt auf die Produktdatenabbildung, das verteilte und kooperative Arbeiten mit Gewicht auf den Arbeitstechniken sowie die virtuelle Produktentwicklung in ihren Grundlagen, so z. B. den Betrachtungen zu Einsatz, Handhabung und Nutzen von Softwarewerkzeugen im Entwicklungsprozess.

Informationsmodellierung
- Prozessanalyse und Prozessmodellierung,
- Objektorientierte Modellierung und
- ISO 10303 - Standard for the Exchange of Product Model Data (STEP).

Verteiltes und kooperatives Arbeiten
- Verteilte Produktentwicklung,
- Kooperative Arbeitstechniken,
- Geschäftsprozessoptimierung und –modellierung und
- Verteiltes Prozess- und Produktmanagement.

Virtuelle Produktentwicklung
- Computer Aided Design (CAD),
- Computer Aided Engineering/X (CAE/CAx) und Integration und
- Produktdatenmanagement (PDM).
Digitale Werkzeugmaschine

Um diesen Herausforderungen zu begegnen, setzen viele Maschinenhersteller verstärkt CAx-Systeme und spezielle Simulationstools ein, um einerseits die Entwicklungsprozesse zu beschleunigen und andererseits die Zeit bis zur Inbetriebnahme zu verkürzen. Insbesondere wird angestrebt, die Anzahl der physikalischen Prototypen und dazugehörigen Tests mittels virtueller Produktionsmaschinen zu reduzieren, alle charakteristischen Eigenschaften der Maschine frühzeitig zu erfassen, Korrelationen zwischen fachspezifischen Eigenschaften zu identifizieren, Fehler sehr früh zu lokalisieren und zu beseitigen. Das virtuelle Modell erlaubt, frühzeitig Aussagen über das Verhalten der Maschine zu treffen und trägt maßgeblich dazu bei, sowohl technisches als auch wirtschaftliches Optimum durch den Synergieeffekt aller Fachbereiche (Maschinenbau, Elektrotechnik und Informatik) zu erzielen. Das virtuelle Modell ist die Voraussetzung zur Umsetzung der Idee von virtueller Fabrik bei OEMs.

Im Rahmen des Projektes „Digitale Werkzeugmaschine“ in Zusammenarbeit mit dem Institut PTW und Bosch Rexroth wurde für den Industriepartner eine Studie durchgeführt, in der Maschinenhersteller verschiedener Branchen und Maschinenanwender (KMU’s und OEM’s) interviewt wurden. Dabei waren Aspekte von Interesse wie:

- Inwieweit werden Produktionsmaschinen mit ITUnterstützung (z. B. CAD, DMU, CAx, etc.) rechnerintern repräsentiert und anwenderfreundlich präsentiert?
- Welche Phasen des Maschinenlebenszyklus werden mit welchen fachspezifischen IT-Unterstützungen begleitet (von der Konzeption bis hin zur Inbetriebnahme und Wartung)?
- Welche marktwirtschaftliche Bedeutung bringt Simulation als produktbezogene EngineeringDienstleistung für Maschinenhersteller und Komponentenzulieferer?
- Welche Problemfelder können bei der virtuellen Entwicklung von Maschinen identifiziert werden?
Wie wird die zukünftige Kooperation zwischen Maschinenanwender und -hersteller sowie deren Zulieferer bei der Realisierung und Nutzung der virtuellen Produktionsmaschinen gestaltet?

Inwieweit sind die virtuelle Entwicklung von Maschinen und deren Ergebnisse für die digitalen und virtuellen Fabrikplanungen von Interesse?

eetc.

Entsprechend der Ergebnisse aus dieser Studie wurden Handlungsbedarfe identifiziert und adäquate Handlungs-empfehlungen an Industriepartner vorgeschlagen.

Bezüglich des Einsatzes der Entwicklungs- und Simulations-techniken konnten im Rahmen dieser Studie klare Trends erkannt werden wie beispielsweise der verstärkte Einsatz von gekoppelten Simulationen mechatronischer Systeme. Hierzu gehören insbesondere SiL (Software in the Loop) und HiL (Hardware in the Loop).

Die alphanumerische Dimensionierung und experimentelle Untersuchung werden zunehmend in eine integrale geometriebasierte digitale Entwicklung umgesetzt. Des Weiteren konnte festgestellt werden, dass sowohl eine holistische rechnerinterne Repräsentation von Produktionsmaschinen als auch Präsentation (Visualisierung) zwar erwünscht ist, jedoch nur durch enge Kooperation zwischen Maschinenhersteller, Komponentenzulieferer aber auch Maschinenanwender realisierbar ist.

Ansprechpartner: Dipl.-Ing. Majid Rezaei
Rezaei@dik.tu-darmstadt.de
EU-Forschungsprojekt Sustainable Production Technologies of Emission Reduced Light-weight car concepts (SuperLightCar)

Die treibende Aktivität innerhalb von SLC geht von sieben europäischen Automobilherstellern aus: Volkswagen (als Koordinator), Fiat Research Centre, Opel, Renault, Volvo Technology Centre, Porsche and DaimlerChrysler. Zusammen mit hochklasigen Forschungsinstitutionen (z.B. Fraunhofer Institut, Deutsches Zentrum für Luft- und Raumfahrt oder Commisariat à l´énergie atomique) und der Zuliefererindustrie (z.B. Arcelor, Hydro, Corus oder Comau) wurde das Projekt formuliert.

SLC verfolgt das ehrgeizige Ziel, Technologien und Designkonzepte bereitzustellen, die es erlauben zukünftige Fahrzeuge des C-Sortiments (1000 Fahrzeuge pro Tag; z.B. Opel Astra, Renault Megane oder VW Golf) mit einer Gewichtersparnis von bis zu 30% zu entwickeln, während die anspruchsvollen Kostenbeschränkungen dieses Segments beibehalten werden.

Prospektive Integration von Techik-, Umwelt- und Kosteneinflüssen

Zu diesem Zweck werden am DiK spezifische CAD-Schnittstellen als auch eine unabhängige Plattform zum LCx-Datenaustausch geschaffen.

Ansprechpartner: Dipl.-Ing. Alain Pfouga
pfouga@dik.tu-darmstadt.de
Dipl.-Wirtsch.-Ing. Kristian Platt
platt@dik.tu-darmstadt.de
Föderierte Integration multidisziplinärer Produktmodelle für die mechatronische Systementwicklung (FIP)

Ziel des Projekts „Föderierte Integration multidisziplinärer Produktmodelle für die mechatronische Systementwicklung (FIP)“ war die Entwicklung eines Ansatzes für ein Informationsmodell, das die föderative Integration multidisziplinärer Produktmodelle bei der Entwicklung mechatronischer Produkte ermöglicht. Diese Integration soll ausgehend vom Beispiel der parametrischen und strukturellen Wechselwirkungen von Gestalt-, Mehrkörpersystem- und Reglermodellen für den Entwurf mechatronischer Systeme erforscht werden. Der Ansatz des föderierten Informationsmodells, das als Datenbankschema für ein föderatives Produktdatenmanagement zugrunde liegt, stellt einen neuen Integrationsansatz zur Realisierung einer PDM/PLM Lösung für mechatronische Systeme dar. Dadurch können die in den verschiedenen Domänen eingesetzten Datenbanken miteinander in einem systemtechnischen Verbund angewendet werden.

Ansatz des föderativen PDM

Der Lösungsansatz des Projekts „FIP“ besteht aus folgenden Schritten:

- Es sollen domänenübergreifende rechnerunterstützte Methoden untersucht werden, die zur Modellbildung und zur Modellanalyse mechatronischer Systeme eingesetzt werden.

- Es sollen Verfahren für die Strukturbildung und -transformation von Partialmodellen konzipiert werden, um die Entwicklung disziplinspezifischer Partialmodelle föderativ koordinieren zu können.

- Es soll eine durchgängige Anwendung von heterogenen CAx-Systemen für Gestaltung, Berechnung und Simulation auf Basis eines repräsentativen PDM-Systems realisiert werden.

Ansprechpartner: Dipl.-Ing. Pham-Van, Tri-Ngoc
phamvan@dik.tu-darmstadt.de
Global Engineering Excellence

Projektpartner der Universitäten und Continental

Um sicher zu stellen, dass die Global Engineering Initiative basierend auf der Studie als Kernelement von Ingenieuren als glaubhaft anerkannt und akzeptiert wird, soll das Projektteam aus 7 internationalen Partneruniversitäten sowie der TU Darmstadt bestehen, die dieses Projekt leiten und koordinieren wird. Die beteiligten Partneruniversitäten sind folgende:

- Technische Universität Darmstadt (Deutschland),
- ETH Zürich (Schweiz),
- Massachusetts Institute of Technology (USA),
- Georgia Institute of Technology (USA),
- Tsinghua University of Beijing (China),
- Jiao Tong University Shanghai (China),
- Universidade de Sao Paulo (Brasilien) und
- University of Tokyo (Japan).

Die Studie sollte die steigende Relevanz von “Global Engineering” reflektieren und übermitteln. Aus diesem Grund sollen auch die Kernmärkte von Continental in dieser Studie abgedeckt und berücksichtigt werden, die da sind: USA, Mexico, Brazil, Spain, France, Germany/Austria/Swiss, Italy, U.K., Sweden, Poland, Russia, South Africa, China, Japan und Malaysia. Die Förderung von jungen zukünftigen Ingenieuren ist von essentiemel Interesse von Industrieunternehmen, um ihre globalen Betriebsaktivitäten zu fördern und unterstützen. Weltweite Wahrnehmung von professionellen Ingenieursprofilen, Ingenieurskarrieren und dem Bild von Ingenieuren verstärkt deren Wahrnehmung sowohl in der Industrie als auch in der Gesellschaft.

Internationale Projektpartner in den Continental-Kernmärkten

Durch den weltweiten Ansatz der Studie soll diese in ihrer Attraktivität zur Berichterstattung durch eine breite Masse von Journalisten erhöht werden. Der weltweite geographische Focus erlaubt eine globale Referenzierung der Studie und liefert somit grundlegende wissenschaftliche Forschungsergebnisse über Ingenieursausbildung,

Als Grundprinzip der Studie müssen die Partneruniversitäten ein gemeinsames Verständnis über das Berufsbild eines Ingenieurs entwickeln und somit versuchen, eine Definition von Engineering zu finden. Diese Definition muss sowohl den Anforderungen der verschiedenen weltweiten Regionen als auch den verschiedenen unterschiedlichen Branchen und Industriezweigen genügen.

Ansprechpartner: Dipl.-Wirtsch.-Ing. Michael Thel
thel@dik.tu-darmstadt.de
Forschung

learn2l - Neue e-learning Methoden und Werkzeuge zur Softwaresystemausbildung

Vor der Realisierung von LearnCAD und learn2l war das Erstellen und Pflegen entsprechender e-learning-Tutorials sehr zeitintensiv. Die durch die Entwicklung von learn2l frei gewordenen Kapazitäten kommen einer Verbesserung der Qualität der vorhandenen Lehrinhalte unter gleichzeitiger Erhöhung des Umfangs an Lehrinhalten zugute und bilden eine gute Basis für die Erweiterung um zusätzliche Inhalte und Funktionalitäten.

learn2l wurde vom e-learning center (elc) der TUD nominiert und ausgezeichnet für den "Best-E-Teaching-Award 2005" der Technischen Universität Darmstadt. (http://idw-online.de/pages/de/news103734)

Ansprechpartner: Dipl.-Ing. Jürgen Rambo
rambo@dik.tu-darmstadt.de
PACE - Partners for the Advancement of Collaborative Engineering Education

PACE verstärkt nachhaltig die Zusammenarbeit der beteiligten Industrieunternehmen mit den Universitäten sowie zwischen den mittlerweile über 30 weltweiten PACE-Universitäten untereinander.

Bislang sind im Rahmen des PACE-Programms Hochschul-Institute mit Hard- und Software im Wert von weit mehr als 1 Mrd. US-$ unterstützt worden. Zu den PACE-Partnern zählen so renommierte Universitäten wie Michigan State University, Purdue University, Virginia Tech in den USA, University of Toronto und Queen's University in Canada, das Instituto Politecnico Nacional in Mexiko und die Shanghai Jiao Tong University in China. Weltweit ist ein Umfang von 50 Partner-Universitäten geplant. Die TU Darmstadt hat als erste europäische Universität diesen elitären Status erlangt.

Das DiK hat die Führungsrolle dieses Förderprogramms an der TU Darmstadt übernommen, da ihm eine Schlüsselposition sowohl in der universitätsinternen Zusammenarbeit als auch in den Kontakten zu den PACE-Industriepartnern zufällt.

Nach einer Initialphase im Jahre 2003, werden seit 2004 Lehrveranstaltungen mit den durch PACE zur Verfügung gestellten Mitteln durchgeführt. Dazu zählen im Fachbereich Maschinenbau die Veranstaltungen:

- Einführungen in das rechnerunterstützte Konstruieren (CAD)
- Advanced Design Project „Collaborative Engineering“
- Grundlagen des CAE/CAD

Ebenfalls im Rahmen des PACE Projektes gelang die Organisation des ersten internationalen „PACE Forum Digital Manufacturing“. Etwa 100 Teilnehmer nahmen dabei die Gelegenheit eines zweitägigen wissenschaftlichen Dialoges wahr. Die Veranstaltung wurde von allen Teilnehmern als großer Erfolg gewertet.

Ansprechpartner: PACE Strategic Management:
Prof. Dr.-Ing. R. Anderl
anderl@ dik.tu-darmstadt.de

PACE Koordination:
Dipl.-Ing. Arndt Ufer
ufer@ dik.tu-darmstadt.de
PACE – vom Design zum Prototypen

In Bezug auf die CAS-Systeme (CAS bedeutet Computer Aided Styling) wird auf die Entwicklung neuer Funktionen gezielt, die einen gestalterischen Entwurf mit parametrischen und constraint basierten 3D-Modellen erlauben, auf deren Basis im technischen Entwurf weitergearbeitet werden kann.

Mit der Einrichtung des CA-Labors wurde eine Arbeitsumgebung am Fachgebiet DiK geschaffen, die diese Werkzeuge und Methoden bereitstellt und eine umfassende Grundlagenforschung ermöglicht sowie deren Integration in Lehrveranstaltungen des Hauptstudiums erlaubt.

Ansprechpartner: Dipl.-Ing. Jürgen Rambo
rambo@dik.tu-darmstadt.de
PACE - Collaborative Engineering

Collaborative Engineering eröffnet hier neue Wege und Möglichkeiten. Entwicklungsteams an unterschiedlichen Standorten, betriebsintern oder –übergreifend, arbeiten auf Basis verschiedener Entwicklungs- und

Um effiziente Methoden der kooperativen Produktentwicklung über Zeitzonen, Sprach- und Kulturräume hinweg erforschen zu können, bedarf es, neben der technischen Ausstattung, leistungsstarker Partner. Die Technische Universität Darmstadt (Deutschland) konnte durch einen Vertrag mit der Universität Virginia Tech (USA) einen solchen Partner im Rahmen des PACE-Verbundes identifizieren und für dieses Teilprojekt gewinnen.

Zum Beginn des Teilprojektes wurde ein eigener Projektplan erarbeitet, der aus vier Arbeitspaketen besteht:

- Aufbau einer Projektumgebung mit identischer Hard- und Software (AP1)
- Erarbeitung eines Konzeptes zur Kopplung der Software (AP2)
- Planung und Durchführung einer gemeinsamen Lehrveranstaltung (AP3)
- Evaluation (AP4)

Ansprechpartner: Dipl.-Ing. Arndt Ufer
ufer@dik.tu-darmstadt.de
PACE – Virtuelle Werkzeugmaschine

Das beste Erfolgsrezept im Werkzeugmaschinenbau ist die Distanzierung von den Wettbewerbern, eine Zukunftsstrategie, die sich langfristig auch bewährt. Eine erfolgreiche Distanzierung erfolgt jedoch mit kürzeren Innovationszyklen, höherer Qualität und kürzerem Time-To-Market, die eng mit dem Faktor Zeit in Verbindung stehen. Mit zunehmender Funktionalität der Werkzeugmaschinen aufgrund hoher Individualität und Innovativität wächst die Komplexität dieser Maschinen stetig.

Normalfall auf dokumentenbasierte Verwaltung von Informationen ausgelegt. Dagegen wird der Inhalt der Dokamente und damit die feingranulare Abhängigkeit nicht berücksichtigt. Hierfür werden Informationsmodelle für die Entwicklung mechatronischer Systeme benötigt, die eine feingranulare Verbindung auf semantischer Ebene zwischen domänenpezifischen Partialmodellen herstellen. Analog zur Produktstruktur wird eine Maschinenstruktur vom PDM-System abgeleitet, in der die fachpezifischen Partialmodelle verankert werden können.

Basierend auf Teamcenter Engineering von UGS und Erstellung von Metamodellen der jeweiligen fachspezifischen Partialmodelle werden im Fachgebiet DiK die Partialmodelle auf Maschinenstruktur referenziert und eine Analyse sowie effiziente Evaluierung des Gesamtsystems ermöglicht. Durch die Interoperabilität zwischen unterschiedlichen fachpezifischen Anwendungssystemen auf Makroebene und bidirektionale Assoziativität zwischen Partialmodellen auf Mikroebene innerhalb Teamcenter Engineering als föderative Entwicklungsumgebung, wird eine Basis zur Entwicklung komplexerer mechatronischer Systeme wie beispielsweise Werkzeugmaschinen, Umformmaschinen, Kunststoffverarbeitungsmaschinen, etc. realisiert.

Basierend auf diesem Konzept wird eine vollständige rechnerinterne Repräsentation aller charakteristischen Eigenschaften einer HSC-Werkzeugmaschine (Geometrie, Material, kinetisches und kinematisches Verhalten) bis zum untersten Detailliterationsgrad angestrebt.

Ansprechpartner: Dipl.-Ing. Majid Rezaei
Rezaei@dik.tu-darmstadt.de
PACE – Virtuelle Produktentstehung
(Teilbericht Virtuelle Brennstoffzelle)

Das Projekt Virtuelle Brennstoffzelle zielt auf die Simulierung der Vorgänge multiphysischen Charakters auf Basis eines Functional-DMU (F-DMU) ab.

Kontextdiagramm für die Schnittstelle

Diese Struktur ermöglicht die Einbettung weiterer 3D-CAD-Systeme sowie Berechnungstools mit unterschiedlichen Schwerpunkten. Der Umsetzung liegt ein vollständig parametrisch konstruierter NX3-Modell zugrunde. Das geometrische Modell wird um die für die Berechnung relevanten chemisch-physikalischen Parameter erweitert, die dann an die Simulationssoftware überführt werden. Als

Kopplungsfenster, Java Anwendung, Rechenvorgang
Für eine tiefere Integration der chemisch-physikalischen Berechnungsdomäne in die geometrische Modellierung wurde eine Grundlage geschaffen. Darauf aufbauend kann ein ganzheitlicher Integrationsansatz für die multiphysischen Domänen erarbeitet werden.

Ansprechpartner: Orkun Yaman, M.Sc
yaman@dik.tu-darmstadt.de
ProSTEP iViP Verein Projekt - Gruppe Collaborative Project Management (CPM)

Diese Empfehlung zielt darauf ab:

- Eine einheitliche Vereinbarung für die Zusammenarbeit incl. Dokumentation verschiedener Projektaktivitäten wie z. B. Kommunikation, Dokumentation und Terminierung zwischen den Projektpartnern zu schaffen.
- Projektunterlagen wie z. B. Terminpläne, Aktivitäten und Dokumentationen zwischen den Projektpartnern über eine neutrale Schnittstelle (Methode, Tool) zur Verfügung zu stellen.
- Das sichtbar machen von inhaltlichen Projektänderungen und deren Auswirkungen bei den Partnern.
- Projektübergreifende Statusüberwachung durch synchronisierte Prozesse und tagesaktuelle Projektinformationen sowie ein Multiprojekt-reporting.

Hierfür wird ein Referenzmodell (siehe Fehler! Verweisquelle konnte nicht gefunden werden.) entwickelt, in dem die Zusammenarbeit mit abgestimmten Prozessen, Rollen, Methoden, Aufgaben, Informationseinheiten, Sprache und Kultur abgebildet werden soll. In diesem Referenzmodell werden die Projektmanagementprozesse innerhalb der einzelnen Unternehmen nicht berücksichtigt.

![CPM Referenzmodell](image-url)
In 2005 wurden folgende Projektphasen durchlaufen:
- Detaillierung des Scopes,
- Viewing/Abgleich der relevanten Prozesse,
- Erstellung des groben Referenzmodells und
- Vorbereitung der Verifizierung mit Pilotprojekten.

Ansprechpartner: Dipl.-Wirtsch.-Ing. Pamela Stöcker
stoecker@dik.tu-darmstadt.de
ProSTEP iViP Verein Projektgruppe CPV

Collaborative Product Visualization
Defining reference processes for the cross-enterprise use of visualization data for data exchange, data access and communication

Projektgrafik mit den Pilotszenarien

Dazu werden folgende Arbeitspakete durchgeführt:

- Erarbeitung Interviewleitfaden (bereits abgeschlossen): Für die Durchführung der Firmenprozessanalyse und der anschließenden Auswertung der Ergebnisse wird ein einheitlicher Interviewleitfaden erarbeitet.
- Durchführung der Firmenprozessanalyse (bereits abgeschlossen): Als Grundlage für die geplante VDA-Richtlinie werden die Prozesse bezüglich dem unternehmensübergreifenden Austausch von Visualisierungsdaten in verschiedenen Unternehmen analysiert und dokumentiert.
- Erarbeitung von Pilotszenarien (bereits abgeschlossen): Nach der Untersuchung der

Ansprechpartner: Dipl.-Ing. Arndt Ufer
ufer@dik.tu-darmstadt.de
Dipl.-Ing. Jens Malzacher
malzacher@dik.tu-darmstadt.de
ProSTEP iViP-Verein Projektgruppe
SimPDM

Das Projekt läuft seit 2003 mit einer großen Teilnehmergruppe aus der Industrie. Aufbauend auf den in den vergangenen Jahren erreichten Ergebnissen wurden folgende Arbeitspakete definiert und bearbeitet:

- Aufbau eines gemeinsamen Verständnisses zum Thema PDM im Bereich Berechnung und Simulation,
- Erarbeitung von Referenzprozessen zur Integration der Simulation und Berechnung in den Produktentstehungsprozess,
- Formulierung von ersten Anforderungen an die Integration,
- Festlegung der CAE-Domänen und der Software-Werkzeuge innerhalb der Domänen,
- Definition der Anforderungen/Einflüsse auf die CAE-Modellstruktur,
- Definition der benötigten Elemente und Attribute der CAE-Modellstruktur,
- Erstellung von Partialmodellen für die definierten Domänen,
- Erstellung eines Konzeptes zur Integrationen der Berechnungsdomänen,
- Erstellung eines Metadatenmodells,
- Erstellung einer Anforderungsspezifikation für die Integration,
- Erstellung eines ersten Demonstrators,

Datenmanagement und -versorgung für CAE (Quelle: SimPDM)

Im weiteren Verlauf des Projektes sind folgende Arbeitspakete geplant:

- Entwicklung von Konzepten zum Parameterabgleich zwischen Produktstruktur und CAE-Modellstruktur,
- Anbindung der CAE-Systeme an xDM-Systeme,
- Erstellung Recommended Practices,
- Betreuung der PDM-Referenzimplementierungen,
- Erweiterung der Anforderungsspezifikation durch die Dokumentation der Anforderungen, der entwickelten Datenmodelle, des Integrationskonzepts und dem Konzept zum Parameterabgleich und
- Aufbau und Betreuung des SimPDM-Anbieterforums (CAE+PDM).

Ansprechpartner: Dipl.-Ing. Jens Malzacher
malzacher@dik.tu-darmstadt.de
Prozesskette CAD-NC auf der Basis von Gussrohmaterialdaten

Die Heidelberger Druckmaschinen AG befindet sich in einer Umstellungsphase der für die Produktentwicklung verwendeten CAD-Software von CATIA V4 auf Unigraphics NX. In diesem Zusammenhang des CAD-Systemwechsels wird auch die digitale Repräsentation der Produkte prozessdurchgängig von 2D auf 3D-Darstellung umgestellt. Eine Prozesskette, die aktuell noch nicht durchgängig dreidimensional im CAD-System abgebildet wird, ist die Prozesskette CAD-NC, wobei ein Hauptaugenmerk auf die Erstellung der Rohteilgeometrie gelegt wird. Im Rahmen dieses Projekts sollen dabei hauptsächlich die ersten Phasen der Prozesskette untersucht werden, so dass es sich hauptsächlich um die Fragestellung dreht, wie man mit Hilfe des Konstruktionsteils das Gussmodell bzw. das Rohteil erstellen kann.

Bei näherer Betrachtung der Prozesskette vom CAD-Modell bis zur NC Bearbeitung auf der Basis von Gussrohmaterialdaten zeigt sich, dass das Konstruktionsteil den Gussbedingungen entsprechend angepasst werden muss. Zusätzlich ist zu erkennen, dass bereits während der Generierung des Gussmodells spätere Prozesstätigkeiten berücksichtigt werden müssen.

Derzeit treten bei der Generierung des Gussmodells bei Heidelberger Druckmaschinen folgende Probleme auf:
- Der Konstruktionsprozess liefert nur eine 3D-Geometrie von Konstruktionsteilen, die nicht als Grundlage für den Guss dienen kann.
- Zur Herstellung der Gussteile wird jedoch das Gussmodell benötigt, das separat auf Basis des Konstruktionsteils erstellt werden muss. (Werkzeugableitung)

Zurzeit werden bei Heidelberger Druckmaschinen also drei unterschiedliche Zeichnungen jeweils neu angefertigt. Hieraus lässt sich das Hauptprojektziel ableiten:
Erarbeitung eines effektiveren Konzeptes für die Umstrukturierung der Prozesskette, so dass die Generierung der einzelnen Modelle direkt auf Basis des Konstruktionsteils erfolgen kann. Eine effektivere Generierung der einzelnen Modelle bedeutet in diesem Fall für den Anwender, dass aufgrund von Automatisierungen Arbeitsschritte entfallen. Gelingt diese Automatisierung nicht, so ist zumindest ein verbindlicher Standard bei der Konstruktion der Gussmodelle zu erstellen, so dass die Prozesse der Generierung der Gussmodelle einheitlich ablaufen.

Ansprechpartner: Dipl.-Wirtsch.-Ing. Michael Thel
thel@dik.tu-darmstadt.de
Sonderforschungsbereich 666
Integrale Blechbauweisen höherer Verzweigungsordnung - Entwicklung, Fertigung, Bewertung

Die gemeinsamen langfristigen Forschungsziele und Erkenntnisinteressen des SFB 666 liegen auf folgenden Gebieten:

- Erarbeiten von Methoden zur systematischen Entwicklung und Nachweis ihrer Tragfähigkeit am Beispiel integraler Blechauteile mit verzweigten Strukturen,
- Herstellung integraler verzweigter Blechstrukturen
- Bewertung und Optimierung von Bauteilen mit verzweigten Blechstrukturen hinsichtlich multifunktionaler Eigenschaftsprofile

Das Fachgebiet DiK ist in dem Forschungsbereich Entwicklung mit den Teilprojekten A4 und A5 vertreten.

Weitere Vorschläge wurden für Veröffentlichungen und die Industriekooperation unterbreitet. Für das Jahr 2006 wurde ein konkreter Zeitplan aufgestellt.

Ansprechpartner: Dipl.-Ing. Marco Kormann kormann@dik.tu-darmstadt.de
Dipl.-Wirtsch.-Ing. Thomas Rollmann rollmann@dik.tu-darmstadt.de
Dipl.-Inform. Zhenyu Wu wu@dik.tu-darmstadt.de
Sonderforschungsbereich 666
Teilprojekt A4 - Modellierungsfunktionen

Möglicher Ablauf der algorithmisierten Modellierung verzweigter Blechbauteile

Eine dreidimensionale Repräsentation der Bauteile ermöglicht dem Konstrukteur, eine begründete Auswahl im Selektionsprozess zu treffen. Um ein dreidimensionales Modell des Produktes zu erhalten, ist es notwendig, neue Modellierungsfunktionen in CAD-Systemen bereitzustellen. Die vollständige Integration aller für Repräsentation und Präsentation verzweigter Blechbauteile notwendigen Anforderungen ist durch konventionelle Funktionen moderner 3D-CAD-Systeme nicht abgedeckt. Der wissenschaftliche Ansatz besteht darin, neue Konstruktionsmethoden und Werkzeuge in 3D-CAD-Systemen zu entwickeln und implementieren, die die algorithmisierte Konstruktion verzweigter Blechbauteile auf Basis mathematischer Lösungsbäume ermöglichen.

Im Jahr 2005 wurden insbesondere die bekannten CAD-Systeme auf ihre bereits existierenden Möglichkeiten der virtuellen Blechbearbeitung untersucht und ihre Eignung zur Darstellung verzweigter Blechbauteile evaluiert.

Ansprechpartner: Dipl.-Ing. Marco Kormann
kormann@dik.tu-darmstadt.de
Sonderforschungsbereich 666
Teilprojekt A5 - Informationsmodell

Im Jahr 2005 wurden u. a. die Informationsflüsse entlang des Produktentstehungsprozesses anhand der vorhandenen Anträge in erster Stufe analysiert und formal in SADT und UML (Use-Case-Diagramm) spezifiziert.

Ansprechpartner: Dipl.-Wirtsch.-Ing. Thomas Rollmann
rolmann@dik.tu-darmstadt.de
Dipl.-Infom. Zhenyu Wu
wu@dik.tu-darmstadt.de
Transferbereich 55 C5 – Life Cycle Design auf Basis von Standardsoftwaresystemen

Die Hersteller energiebetriebener Produkte sollen bei der Erfüllung umweltrelevanter Richtlinien im Bereich des produktbezogenen Umweltschutzes unterstützt und somit zum Life Cycle Design befähigt werden. Richtlinien, die in diesem Projekt behandelt werden sollen, sind:

- Rahmenrichtlinie für die Festlegung von Anforderungen an die umweltgerechte Gestaltung energiebetriebener Produkte (EuP),
- Richtlinie über Elektro- und Elektronik-Altgeräte (WEEE) und Beschränkung der Verwendung bestimmter gefährlicher Stoffe (RoHS) und
- Richtlinien des produktbezogenen Umweltschutzes weltweit.

Integration des Life Cycle Designs

Die Zusammenführung der im SFB 392 erarbeiteten Methoden und Instrumente bezüglich der Entwicklung umweltgerechter Produkte und der umfassenden technischen und betriebswirtschaftlichen Produktlebenszyklusbetrachtung des SAP-Systems birgt ein enormes Potenzial, eine praktikable Lösung zu entwickeln, mit deren Hilfe eine standardisierte Einhaltung dieser Richtlinien (Compliance) ermöglicht wird.

Dieses Projekt wird in Zusammenarbeit mit dem Fachgebiet Produktionsmanagement, Technologie und Werkzeugmaschinen (PTW) und der TechniData AG bearbeitet. Das DiK ist hierbei für die Analyse der europäischen und weltweiten Umweltgesetzgebungen zuständig.

Ansprechpartner: Dipl.-Wirtsch.-Ing. Pamela Stöcker
stoecker@dik.tu-darmstadt.de
TUD-Ultramarathon 2005

DiK steht für „Dauerlauf im Kreis“, zumindest am Tag der „TUD in Bewegung“. Ultramarathon, das sind 42 km aufgeteilt auf mindestens 11 Läufer.
Mit einer Gesamtzeit von 2:52:30 war das Team aus wissenschaftlichen und studentischen Läufern des DiKs damit nicht nur das schnellste an diesem Tag, sondern sogar das erste Team, das damit die Schallgrenze von 3:00:00 Stunden durchbrach.

Auf einen erfolgreichen Ultramarathon 2006 freuen wir uns schon jetzt. Das Training hat bereits begonnen …

Ansprechpartner: Die Mannschaft des DiK
Annual Report 2005

Department of
Computer Integrated Design

Prof. Dr.-Ing. R. Anderl
Department of Computer Integrated Design (DiK)

Prof. Dr.-Ing. R. Anderl
Darmstadt University of Technology
Petersenstraße 30
D-64287 Darmstadt

Phone: (0 61 51) 16-60 01 / Fax: (0 61 51) 16-68 54
E-Mail: anderl@dik.tu-darmstadt.de
www.dik.maschinenbau.tu-darmstadt.de
Preface

The chair of Computer Integrated Design (DiK) is one of 23 departments of the Faculty Mechanical Engineering at Technische Universität Darmstadt. The year 2005 was one of our most successful years but also one of our most challenging. Therefore I want to thank all my scientific researchers, technical and administrative staff for this successful collaboration and the motivating and fruitful atmosphere. Furthermore I want to thank the presidential board of Technische Universität Darmstadt as well as my colleagues from the Faculty Mechanical Engineering for their ongoing strong support. Special thanks also to both, the faculty’s and the university’s administration.

DiK is involved in research and teaching activities in the area of information processing in mechanical engineering. The activities are represented by the following areas of responsibility:

- Teaching in the undergraduate and graduate program, and
- Fundamental and application oriented research.

At DiK more than 1400 examinations have been approved on the undergraduate level and about 330 on the graduate level.

Scientific research and teaching have been performed in four attractive fields of competence:

- Information modelling,
- Virtual product development,
- Distributed and cooperative engineering and design, and
- CAx-laboratory.

The competence field “information modelling” deals with the development of object-oriented methods and tools for information modelling in the field of mechanical engineering. The main topics are dedicated to the development of product models as specified by ISO 10303 (STEP).

In the competence field “virtual product development” digital product engineering, digital design and digital production planning methods are developed, analysed and evaluated. The common goal is to use once described product data many times within successive process chains. One main goal is to apply parametric and knowledge driven 3D-CAD systems for the interdisciplinary development of products.

In the competence field “distributed and cooperative engineering and design” research is performed on the development of methods for product design and engineering in 24/7 scenarios distributed around the world.

The competence field CAx-laboratory is dedicated to new innovative methods for product styling and design. Main emphasis is on the interdependencies between virtual product design and physical prototyping.

The year 2005 was very successful. All milestones in education as well as in research have been achieved. The main highlights were the successful application and approval of the collaborative research centre 666 “Integrated Sheet Metal Part Development of Higher Bifurcation”, the approval of the EU funded project “SLC: Superlight-Car - Sustainable Production Technologies of Emission Reduced Lightweight
Car Concepts”, the fundamental research project on “federated PDM-systems”, the successful presentation of the PACE research results and the further support by the PACE partners.

In the year 2005 the intercontinental Advanced Design Project on Collaborative Engineering was established where students from Virginia Tech (USA), Howard University (USA), ITSEM Monterrey (Mexico) and TU Darmstadt collaboratively developed an automotive powertrain assembly. This was performed by mostly using modern internet-based teleconferencing technology.

We are very honoured and happy for receiving the following awards:

- Excellent e-Teaching, awarded by Carlo und Karin Giersch Stiftung,
- Award for excellence teaching based on the „Transatlantic Mechanical Engineering Course on Product Data Management“, awarded by Vereinigung von Freunden der Technischen Universität Darmstadt e. V.,
- PLM Innovation Award, awarded by UGS,
- ProSTEP-iViP Challenge, PLM Services for Mechatronics, awarded by ProSTEP-iViP Verein e. V., and
- Challenge Cup for winning the TUD-Marathon.

I am also very honoured by having been appointed as Adjunct Professor at Virginia Tech (Virginia Polytechnic Institute and State University) Mechanical Engineering Department.

Furthermore I want to point out in particular the successful doctor theses by Mr. Claus Heeg, Mr. Sebastian Leibrecht, Mr. Olaonipekun Bernard Faneye, Mr. Ullrich Pfeifer-Silberbach, and Mr. Frank Schöfer. Congratulations and best wishes for your successful professional career!

I appreciate the results achieved in 2005 very much and I want to thank all the members of DiK for their high motivation and continuously committed efforts.

December 2005

Prof. Dr.-Ing. R. Anderl
Courses offered in basic studies

The courses offered in the undergraduate program contain lectures accompanied by intensive courses introducing the methods of data processing. These courses are applied to the prospective engineers’ fields of activity. The courses are an integrated part of the first two semesters and consist of

1st semester: Lecture Basics of Data Processing
Course Programming Languages and Techniques

2nd semester: Introduction to computer aided design (CAD) (lecture and course)

The contents and aims of these courses are chosen to convey a well-founded knowledge of data processing in mechanical engineering. The courses especially focus on the use of a parametric 3D-CAD-system as an introduction to CAD in the 2nd semester. This use of 3D-CAD is based upon the process chain of design with the intent to reuse all created product data from 3D-modelling most efficiently in later steps of the product chain. The education is continued in the second year (3rd and 4th semester) in the Machine Elements lectures and courses.
Basics of Data Processing

The lecture deals with relevant topics of the today's data processing for the mechanical engineering branch. Selected chapters of technical, practical and applied computer science impart methodical application and effective working with as well as the understanding of electronic data processing.

An emphasis forms the introduction to the software lifecycle, as well as the methods of object-oriented software development, which is practiced in the accompanying programming course (PST).

Educational goals:

- Mastery of the mathematics and technical basics of electronic data processing,
- Ability to develop data structures and algorithms,
- Ability develop object-oriented software,
- Knowledge of the hardware of electronic computers and distributed systems,
- Understanding of the connection between operating systems and application software and
- Knowledge of the different application systems.

Contact: Dipl.-Ing. Daniel Spieß
spiess@dik.tu-darmstadt.de
Programming languages and techniques

The tutorial to the lecture “Basics of Data Processing” intensifies the area “methods of programming”. The focus of this tutorial is the teaching of object-oriented concepts. Next to a theoretical introduction the creation of object-oriented models with graphical tools and the implementation with the programming language JAVA is practiced in guided workshops.

Further points of focus are methodical software development, planning and implementation of algorithms and the programming of graphical user interfaces.

The tutorial concludes with a two week long thesis, that is to be solved in teams of four students. With an adequate result the grade of the lecture “Basics of Data Processing” can be improved (for further information see slides of the theoretical introduction). The exam to the lecture “Basics of Data Processing” consists of about 40% that is intensified in the tutorial.

An extra challenge in winterterm 2004/2005 was the, compared with former years, big number of freshmen. About 710 students successfully accomplished this course. Within the scope of the TUD-online-initiative this course was fully offered in form of an onlinetutorial.

Contact: Dipl.-Ing. Daniel Spieß
spiess@dik.tu-darmstadt.de
Introduction to Computer Aided Design (CAD)

This lecture course deals with the basics of three-dimensional design on CAD-workstations and how this applies to the development of solutions for design problems. Within the course the three-dimensional geometrical description of parts, the implementation of design intentions, the definition of product structures and the use of standard or catalogue parts are taught. The solutions developed must be presented and documented in different ways e. g. by the derivation of technical drawings from the CAD-model which have to be compliant to standards. All material for the lecture and the course is supplied digitally; therefore the independent use of the information technology tools is promoted.

Contact: Orkun Yaman, M. Sc.
yaman@dik.tu-darmstadt.de
Dipl.-Ing Marc Bierwerth
bierwerth@dik.tu-darmstadt.de
Courses offered in the main course

The main course enables interested students to deepen their knowledge in the topics of data processing in the product development process. These courses are available to students from their fifth semester on and contain the following topics:

Lectures:
- Product Data Technology A (CAD systems and CAX process chains)
- Product Data Technology B (product data management)
- Product Data Technology C (product and process modelling)
- Principles of CAE/CAD I and II

Tutorial:
- CAD-Mechatronics within CATIA V5
- Tutorial 3D-CAD with Unigraphics

ADP:
- Virtual Product Development

The central approach of these courses is based on the so-called product data technology. This product data technology as an interdisciplinary field is characterized by the basics of information science and methods of engineering science, especially the mechanical engineering. The fundamental concept is based upon a general processing (no breaks in media, no loss of information) of digital representable product data in all phases of the product life-cycle.

The data processing systems used in this context, the integrated product data model in STEP and methods and tools to manage the product data in the product life-cycle are topics of the courses in the main course.
Product Data Technology A - CAD systems and CAx process series

A basic introduction to modern product data technology is given in the lecture. In particular, the idea of product model and the handling of product information, which are necessary for complete product specification, is placed into the foreground. The didactical concept of the lecture is based on stating the mathematical, IT- and methodical basics of CAD systems in order to demonstrate in the subsequent course of the lecture how to apply the data generated by 3D CAD systems for different purposes. The learning targets are:

- Comprehension of correlations: integrated product model - product information - CAD systems - CAx process series,
- Knowledge about different models for computer internal description of product information,
- Knowledge about computer-supported methods for design, construction, optimization, presentation, manufacturing preparation and documentation of products and
- Comprehension of the interaction of data processing systems within process series.

Especially the following topics are specified in the lecture:

- The integrated product including definitions of the terms of product definition, product representation and product presentation,
- Basic mathematical principles concerning geometric elements in 3D CAD systems,
- Introduction into common geometry models (1D-3D), in particular volume models,
- Different kinds and further applications of product presentations, including related information e.g. on the theory of colors,
- Computer-supporting in product development and
- Conceptual and methodical basics concerning shaping, modelling and structuring, e.g. parametric equations, standard parts, variant parts.

Furthermore important CAD process chains of product development from product conception till manufacturing processes are analyzed, discussed and exemplified by representational examples.

In particular, these are the process chains:

- CAD-Digital Mock-Up (DMU),
- CAD-Finite Element Analysis (FEA),
- CAD-Technical Product Documentation (TPD),
- CAD-Rapid Prototyping Technology (RPT),
CAD-Virtual / Augmented Reality (VR/AR) and CAD-Numerical Control (NC).

Numerous examples from research and development are demonstrated to facilitate the aims of the lecture. A Visit to the Fraunhofer Institute for Computer Graphics (IGD) and presentations of experts from industry provide valuable impressions for the attendees.

Contact: Dipl.-Wirtsch.-Ing. Thomas Rollmann
rollmann@dik.tu-darmstadt.de
Product Data Technology B - Product data management

The importance of product data management and its functions is the major aspect of this lecture. The basic technologies and basic conditions of product data management systems are discussed. Also the organizational preconditions for the use of the system are presented. Furthermore a rough overview of the architecture of those systems is given and examples of data models are shown. Concerning the growing importance of workflow management systems they are presented separately.

Example of a release-workflow

Aims of teaching:
- Comprehension of product data management systems and the correlations between them, the integrated product model and workflow management systems,
- Knowledge about the basic technology of product data management systems,
- Comprehension of the organizational preconditions and
- Knowledge about the structure of product data management systems.

Contact: Dipl.-Wirtsch.-Ing. Pamela Stöcker
stoecker@dik.tu-darmstadt.de
Product Data Technology C - Product and Process Modelling

Central vision of product data technology is the development of a product by using information and communication technologies regarding the product quality in order to optimize the product costs and the development process as well as the efficiency of the development process. This leads to an intensified use of software systems in all sub-processes of the product development as for example the use of CAD and PDM systems within the construction process.

In this lecture different principles, methods and tools for product and process modelling are presented. Principles of system engineering like the hierarchical structuring and modelling are discussed. Methods of model designing and its specification are pointed out and discussed. Looking at the ISO 10303 (better known as the "Standard for the Exchange of Product Model Data" - STEP) the approach of systematic data modelling gets explained by using SADT, EXPRESS and EXPRESS G. The concepts of the process modelling are described on the basis of the business process modelling. Within this context possibilities for modelling business cases and processes by using UML as well as the integrative method ARIS are introduced and discussed. Furthermore alternative XML-based solutions are discussed.

In order to delve the acquired, theoretical knowledge, practical examples and exercises are done within the lecture.
Aims:

- Comprehension of correlations between functions, data and process modelling,
- Knowledge about the use of modelling techniques for business process reengineering,
- Knowledge about the product model as specified in ISO 10303 (STEP),
- Knowledge about mapping product and process models into industrial applications.

Contact: Dipl.-Ing. Jens Malzacher
malzacher@dik.tu-darmstadt.de
Tutorial Advanced CAx
Freeform modelling with CATIA V5

The course ‘Advanced CAx – Freeformmodelling with CATIA V5’ teaches different policies to generate complex parts and assemblies using the CAD system CATIA V5 from Dassault Systemes. The focus of this course is the explanation and practice of the methodology for freeform modeling. Therefore the workbench Generative Shape Design (GSD) will be used.

The workbench GSD offers functionality to create elements which are necessary for surface modelling. The methodology of surface modelling is totally different of solid modeling. Typical applications of surface modeling is autobody sheet steel, ship bodies and aircraft bodies, turbine blades as well as complex geometry of e.g. mold forms. Therefore Freeform modelling is used in styling and design context.

Computer mouse models with freeform surfaces

Contact: Dipl.-Wirtsch.-Ing. Michael Thel
thel@dik.tu-darmstadt.de
Tutorial - Working with the 3D-CAD-System Unigraphics

In this tutorial the students work with 3D-CAD systems, learning the application of methodical approach for the design of complex components and assemblies with the parametric 3D-CAD system Unigraphics. Besides that cooperative work technologies are used, because a special attention is made to group work. Thus one generates individual parts in methodical approach in CAD. Nevertheless, the group as a whole is responsible for the product structure, the integration of the individual parts to the whole product and the group internal division of labour.

Contact: Dipl.-Ing. Jens Malzacher malzacher@dik.tu-darmstadt.de
Orkun Yaman, M. Sc. yaman@dik.tu-darmstadt.de
Tutorial Collaborative Engineering - Windchill Basics

During summer 2005, the DiK has offered a tutorial with the aim of realising the theoretical knowledge gained from the course Product Data Technology to a practical teamwork with Windchill (PTC). Students were hereby initiated to ProjectLink and PDMLink on the basis of help documents provided by the product development system of PTC. The main objective during the tutorial was to setup an appropriate theoretical and practical basis with regard to specific requirements in educational use. For this purpose the authoring system "learn2l" (learntool), made by the DiK, was used.

A fast and easy creation of the course contents is thus possible. The result consists of several configurable course modules about product data and project management. They provide the basis for further student and research activities that e.g. include the investigation and the development of scientific methods and tools for product management, design management or the analysis of product’s stage of maturity.

Development of the new tutorial documents

Contact:
Dipl.-Ing. Alain Pfouga Bopoungo
pfouga@dik.tu-darmstadt.de
Dipl.-Ing. Jürgen Rambo
rambo@dik.tu-darmstadt.de
Dipl.-Inform. Zhenyu Wu
wu@dik.tu-darmstadt.de
Principles of CAE/CAD I

The course “Principles of CAE/CAD I” is offered to the students of the departments of Computational Engineering, Mechanical Engineering and Computer Sciences. The course can be taken by the students of the above mentioned departments (Bachelor and Master) as an elective course, while for the Computational Engineering students the course is compulsory (Bachelor). Topics are divided among the lecturing Professors: Prof. Anderl, Prof. von Stryk, Prof. Huss and Prof. Encarnação.

"Principles of CAE/CAD I” took place in the summer term 2005. The syllabus contains following topics sorted with respect to the lecturing professor:

- Prof. Anderl – introduction, architecture, geometric modelling,
- Prof. von Stryk – modelling, mathematical methods and -techniques,
- Prof. Huss – modelling, simulation, types of implementation and
- Prof. Encarnação – virtual reality, augmented reality.

The topic of Prof. Anderl contains particularly the following points:

- Introduction to the CAD/CAE-techniques,
- Product definition, -representation and –presentation,
- Geometric modelling / lines, surfaces and solids,
- Modelling with features and
- Parametric modelling and modelling with constraints.

Contact: Dipl.-Wirtsch.-Ing. Michael Thel
thel@dik.tu-darmstadt.de
ADP – Virtual Product Development, Computer Aided Process Chain from Idea to Real Prototypes

Within the Advanced Design Project a team of four students analysed and described the computer aided process chain from product idea to real prototype model. A new adapter for the already in the CAD-course used “Multipart-Tool” was taken as example for the realisation of the process chain and the work were done at the DiK’s new CA-laboratory. First the Steinbichler 3D-Scanner was used to digitize an existing adapter from the Multitool. Then CATIA V5 was used to model surfaces und solid-models as CAD-parts and assemblies. Finally a real prototype was printed with the Dimension rapid prototyping machine from Stratasys.

Process chain: from the original model to the new prototype

In particular functional, ergonomical and aesthetical aspects have been considered during the whole process chain.

The results of the project are a basis for further ADPs and the development of new methods and tools for “The Computer Aided Development of Ergonomical and Design Oriented Tools”

Contact: Dipl.-Ing. Jürgen Rambo rambo@dik.tu-darmstadt.de
ADP - Virtual Product Development within the Scope of Design and Styling Oriented Products

Within the Advanced Design Project a team of 5 students developed and analysed new methods for the definition and reuse of fully variable 3D-CAD-elements for design and styling-oriented products. Catia V5 was used as 3D-CAD-system and the sole surfaces and structure elements of the sports shoe Megaride from adidas were taken as an example to show and validate the results of the project. Limits and potentials of the use of such elements were considered as well.

Structure elements of a sports shoe

Contact: Dipl.-Ing.Jürgen Rambo
rambo@dik.tu-darmstadt.de
ADP – Collaborative Engineering

The intention of the advanced design project in winter term 2005/2006 was to upgrade an existing product constructively by using fundamental methods of Collaborative Engineering in international teams. The advanced design project was executed in collaboration with students of Virginia Tech (USA), Howard University (USA) and ITESM Monterrey (Mexico) as project partners. As industrial partner the Adam Opel GmbH supported the project with technical data of the Opel Zafira. Tools for Project Management and Collaborative Engineering, e.g. for cooperation and data exchange between the two locations, were used by the student teams distributed in time and space.

Students doing cooperative work in different locations

Contact: Dipl.-Ing. Arndt Ufer
ufer@dik.tu-darmstadt.de
DiK - Statistics Study 2005

Number of Examinations

<table>
<thead>
<tr>
<th>Examinations</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics of Data Processing</td>
<td>600</td>
</tr>
<tr>
<td>Basics of CAE/CAD</td>
<td>720</td>
</tr>
<tr>
<td>Programming Languages and Techniques</td>
<td>380</td>
</tr>
<tr>
<td>Introduction to Computer Aided Design (CAD)</td>
<td>600</td>
</tr>
<tr>
<td>Product Data Technology</td>
<td>305</td>
</tr>
<tr>
<td>3D-CAD Workshops</td>
<td>40</td>
</tr>
<tr>
<td>ADP</td>
<td>15</td>
</tr>
<tr>
<td>Diploma Thesis, Technical Projects with Constructional Design or Design Projects</td>
<td>32</td>
</tr>
</tbody>
</table>
Research

The strategic aim of the research projects is scientific exploration and design of integrated product development processes, elaboration of fundamental methods and knowledge transfer to industrial application. Technologies such as product data technology using the integrated product model are a basis for research in computer integrated methods realizing innovative and interdisciplinary product development and design. To implement these methods supporting the whole product development process, software and hardware tools are designed. Another important research area is the development of new working environment systems, based on a co-operative, distributed organization of work and the use of hypermedia and multimedia.

In the past years three main areas of research have been established: the information modelling with the main focus directly to the product data description, the distributed and co-operative work with emphasis on the work techniques as well as the virtual product development in their main features, e.g. the views of applications, handling and use of software tools during the development process. Authorities in the following areas are available:

Information Modelling
- Process Analysis and Modelling (PAM),
- Object-oriented Modelling (OOM) and
- Standard for the Exchange of Product Model Data (STEP).

Distributed and Co-Operative Work
- Distributed Product Development (DPD),
- Co-Operative Working Techniques (CWT),
- Business Process Reengineering (BRP),
- Collaborative Process and Product Management (CPPM).

Virtual Product Development
- Computer Aided Design (CAD),
- Computer Aided Engineering/X (CAE/CAX) and Integration and
- Product Data Management (PDM).

In the following the individual projects, processed in the calendar year 2005, are presented.
Digital Machine Tool

Due to global markets, many machine tool manufacturers are forced today, to accelerate innovation cycles, to decrease time-to-market and time-to-customer, to enhance quality standards and to meet specific requirements. Furthermore, the short start-up and ramp-up times of production machines come along with reduction of product innovation cycles. Thus, the necessity of shorter development and production times is increasing consequently.

Currently, various machine tool manufacturers are using CAx-Systems and special simulation tools to manage this challenge to accelerate development processes and to reduce start-up times. In particular, the information technology (IT) aims at reducing the number of physical prototype and corresponding tests using virtual production models. All characteristical properties can be detected early on the base of this virtual model. Furthermore, the correlations between specific properties can be identified and errors can be localized and eliminated in early phases of development processes. The virtual model allows to forecast the behaviour of machine tools and production systems. It contributes to achieve technicality and economic optimum due to synergy effect of specific domains (mechanic, electric, information technology). Virtual models provide a foundation of the virtual factory concept by OEM’s.

In the context of the project “digital machine tool” in cooperation with the institute PTW and Bosch Rexroth AG, a study is carried out in order to find out about the following issues:

- How far can the production machines be represented and presented with the IT support?
- Which phases of machine life cycle are supported by which IT-Tools (from conceptual design to start-up and services)?
- Which economic impacts bring simulation as a product-related engineering service for machine manufacturers, users and suppliers?
- How is the cooperation between machine manufacturers, users and suppliers organized for the realization and utilization of virtual production systems in the near future?
How important is the virtual development of machines and its results for implementation of digital and virtual factory planning? etc.

According to the results of this study, several “calls for actions” have been identified for industrial partners and also adequate solutions have been additionally suggested. With regard to the use of environment and simulation techniques some trends could be found out in this surrounding field e.g. coupling of simulation disciplines of machatronic systems like SiL (Software in the Loop) and HiL (Hardware in the Loop).

The machine tool development undergoes a paradigm change from alpha numerical dimensioning and experimental analysis to integral geometry-based digital development. Furthermore it has been detected that both, holistical representation and presentation (visualization) of production systems are desired from machine manufacturers, users and suppliers which require an intensive cooperation. A lifecycle-oriented development of machine tools will be established in near future with the aid of IT.

Contact: Dipl.-Ing. Majid Rezaei
Rezaei@dik.tu-darmstadt.de
EU-Research Project Sustainable Production Technologies of Emission Reduced Light-weight car concepts (SuperLightCar)

SuperLightCar is a collaborative Research & Development project co-funded by the European Commission under the 6th Framework Programme. In SuperLightCar, 38 leading organizations from 9 European countries work together to bring lightweight automotive technologies closer to high volume car production.

SuperLightCar has a multi-material philosophy, striving to use for each part the best material and manufacturing processes in terms of weight and cost minimization, while fulfilling a wide range of automotive requirements in areas such as stiffness, crash performance, fatigue and corrosion resistance, etc.

The core driving force for SuperLightCar has been from the start a group of seven European car makers: Volkswagen (as coordinator), Fiat Research Centre, Opel, Renault, Volvo Technology Centre, Porsche and DaimlerChrysler. These, together with top level organizations from science (e.g. Fraunhofer Institutes, Deutsches Zentrum für Luft- und Raumfahrt or Commisariat à l´énergie atomique) as well as the supplier industry (e.g. Arcelor, Hydro, Corus or Comau), have defined the SuperLightCar approach. The project has an ambitious objective; it aims to deliver the technologies and design concepts that would allow up to 30% weight reduction in the C-class car models of the future generations, while respecting the very demanding cost restrictions of such popular models. SuperLightCar coordinates with other major RTD projects co-funded under the 6th Framework Programme through the EUCAR umbrella (EUCAR: European Council for Automotive Research).

The precompetitive achievements of SuperLightCar applied in series production beyond 2010 will serve a basis to save millions of tons fuel respectively carbon dioxide due to significantly reduced vehicle weight.

The objectives of DiK within the project are to link the domains of concept development with the domains of Life Cycle Assessment and Life Cycle Costing (LCx) in a manner that already within concept development, LCx-relevant information can be adapted and made available for use. This ensures a prospective Assessment of Cost and Environmental Issues with regard to technical issues.
Prospective Integration of Technical, Environmental and Cost Issues

For this purpose, DiK develops specific CAD interfaces and an independent platform for LCx data-exchange.

Contact: Dipl.-Ing. Alain Pfouga
pfouga@dik.tu-darmstadt.de
Dipl.-Wirtsch.-Ing. Kristian Platt
platt@dik.tu-darmstadt.de
Federated Integration of multi-disciplinary Product Models for the development of mechatronic systems (FIP)

The aim of the Project „Federated Integration of multi-disciplinary Product Models for Development of mechatronic Systems“ was the development of an information model, which supports the federated integration of multi-disciplinary Product Models for the development of mechatronic Products. To realize this integration, the parametric and structural interdependency between shape, multi-body-system and control models should be investigated. The development of a federal product data management system is based on the federated information model, which also represents the database schema. The idea of the federated information model opens a new integration approach for the PDM/PLM solution, which supports the development of mechatronic systems. With this approach, the databases, which are deployed in different mechatronic domains, can be linked to each other.

Approach of the federal PDM

The approach of the project „FIP“ consists of the following steps:

- Comprehensive computer-aided methods should be investigated, which are deployed for model development and model analysis of mechatronic systems.
- Conceptual approaches for structure building and transformation of partial models should be designed to coordinate the development of federal discipline-specific partial models.
- An integrated application of heterogeneous CAx-systems for shape design, computation and simulation should be realized, which is based on a representative PDM-system.
The above given research initiatives should be validated based on the integrated design process for a mechatronic wheel module.

This research project started in January 2005 and ended in December 2005.

Contact: Dipl.-Ing. Pham-Van, Tri-Ngoc
phamvan@dik.tu-darmstadt.de
Global Engineering Excellence

The industrial enterprise Continental AG sponsors a scientific study about “Global Engineering” which should be carried out every two years. The study is entitled to continuously analyse engineering profiles worldwide and to present the results in a unique global information platform. There should be no exclusive focus on the automotive industry, rather an involvement of all branches, strongly influenced by engineering science.

Together with a selection of leading universities from all over the world those have strongly influenced engineering science, Continental aims at long-term promotion of “Global Engineering”. Therefore the universities develop a questionnaire for the Global Engineering initiative. Based on this approach pace maker initiatives for technological innovation in relevant international core markets of Continental shall be analysed.

Project Partners from Universities and Continental

The partner universities are responsible for investigating engineering profiles in their countries and to contribute to the understanding of higher engineering education, vocational education and professional recognition and engineering practice. This unique study shall start in October 2005 and shall be finished in Oktober 2006. The study shall be updated every two years.

To ensure that the global engineering initiative based on the study as core element remains reliable, recognized and accepted by engineering professionals the project team should consist of 7 international partner universities chaired by TU Darmstadt. The requested partner universities are the following:
Technische Universität Darmstadt (Germany),
ETH Zürich (Switzerland),
Massachusetts Institute of Technology (USA),
Georgia Institute of Technology (USA)
Tsinghua University of Beijing (China),
Jiao Tong University Shanghai (China),
Universidade de Sao Paulo (Brazil) and
University of Tokyo (Japan).

The study should reflect the increasing importance of "Global Engineering" and convey its global relevance. Therefore all core markets of Continental are intended to be covered by the study, namely USA, Mexico, Brazil, Spain, France, Germany/Austria/Swiss, Italy, U.K., Sweden, Poland, Russia, South Africa, China, Japan, and Malaysia. The promotion of young and future engineers is of essential interest of industrial enterprises to support its global business activities. Worldwide recognition of professional engineering profiles, engineering careers and image building increase the awareness of engineering in both, the industry and the society.

International Project Partners in Continental core markets

By covering engineering profiles worldwide the study on Global Engineering is attractive for reporting by a broad community of international key journalists. The worldwide geographic focus allows a ubiquitous referencing of the study and therefore it contributes with fundamental scientific research results for engineering education, careers and professional engineering profiles. A segmentation analysis approach might be taken into account if appropriate. It might be structured geographically, according to industrial branches, or with respect to business structures. The study will be established as a continuous activity and therefore it will be conducted regularly every two years. Additionally the study acts as an indicator for the development of the engineering profiles worldwide.
As a basic principle of the study the Partner Universities have to find a common understanding of the profession of an engineer and try to develop a final definition of engineering. This definition has to fit the demands of different regions worldwide as well as different job descriptions worldwide.

Contact: Dipl.-Wirtsch.-Ing. Michael Thel
thel@dik.tu-darmstadt.de
learn2l - New concepts and tools in Software-Training

Within this project a software system was developed to create, maintain, manage and present online tutorial content. The development of the authoring system learn2l (learntool) is based on an iterative process since 1995 when first attempts for an e-learning environment at the DiK were traced. Due to the constant evaluation of the 2003 developed system learnCAD for the 3D-CAD-courses the department gained new ideas and hints for the further improvement of e-learning tools.

So within the call for the DualMode Programm 2004 (www.dualmode.tu-darmstadt.de) the DiK developed the authoring system learn2l for the creation, management and presentation of e-learning-content.

learn2l was nominated and selected from the e-learning center (elc) of the TUD for the "Best-E-Teaching-Award 2005". (http://idw-online.de/pages/de/news103734)

Contact: Dipl.-Ing. Jürgen Rambo
rambo@dik.tu-darmstadt.de
PACE - Partners for the Advancement of Collaborative Engineering Education

PACE - Partners for the Advancement of Collaborative Engineering is an international support program of General Motors, EDS, SUN Microsystems and UGS. The initiative was founded in 1999, providing strategically selected universities all over the world with state-of-the-art CAD/CAM/CAE- and PLM- software. In addition, the PACE partners give donations in hardware and automotive parts to enforce the education of future engineers. This technology is a great chance to challenge education and research. Furthermore PACE will strengthen the cooperation between the more than 30 PACE partner universities and the industrial PACE partners worldwide.

The donations in hardware and software made within the PACE-program score to more than 1 billion US$ so far. Renowned for engineering and research supported PACE partners are universities like Michigan State University, Purdue University, Virginia Tech in the USA, University of Toronto and Queen's University in Canada, the Instituto Politecnico Nacional in Mexico as well as the Shanghai Jiao Tong University in China. A total of 50 partner universities is planned worldwide. The Technical University Darmstadt is the first University in Europe that was elected as a PACE partner.

The support of hardware and software will provide the consistent modernization process of research and education at the TU Darmstadt. The sophisticated software, currently used in the General Motors group in research and manufacturing will promote the practical research and development at TUD.

Therefore the DiK has an exceptional position in the collaboration within the Technical University of Darmstadt as well as co-operation with the industrial PACE partners.

Since 2004, following an initial phase in 2003, PACE-powered classes could be held. Within Mechanical Engineering the following classes:

- Introduction to Computer Aided Design (CAD)
- Advanced Design Project „Collaborative Engineering“
- Principles of CAE/CAD

PACE Coordination for TU Darmstadt is hosted by the Department of Computer Integrated Design (DiK) while the Software and License Management since 2004 is independently managed by TUD’s central IT Department (HRZ).

Due to the PACE partnership the Technical University of Darmstadt was able to acquire extra funding of 999 920.80 € from the Innovationsbudget of the Region of Hessen for progressing research in the fields of "Collaborative Engineering" and “e-Product Creation”. All
projects were finished within the scheduled time. The sub-
project reports are following this article.
In December 2005 Technische Universität Darmstadt was
hosting the first “International Forum Digital
Manufacturing”. Approximately 100 participants were able
to scientifically discuss the aspects of today’s Digital
Manufacturing world. By all participants, the forum was
seen as a big success.

Contact: PACE Strategic Management
Prof. Dr.-Ing. R. Anderl
anderl@dik.tu-darmstadt.de
PACE Coordination
Dipl.-Ing. Arndt Ufer
ufer@dik.tu-darmstadt.de
PACE – from Styling to Prototyping

The Subject “From Styling to Prototyping” plays a very important role for the product design process. It is based on methods and tools for modelling in CAS and CAD systems, virtual and rapid prototyping, setting up process chains and the reverse engineering.

In context to CAS systems (CAS stands for Computer Aided Styling) the development of new functionalities is aimed for the styling process with parametric and constraint based 3D models, which can also be used for the technical design process.

Based on the product data derived from CAS and CAD models, physical prototypes are created with rapid prototyping technologies. Physical prototypes are used for testing whose results lead to modifications which are taken back into the CAS and CAD systems. This is called reverse engineering.

Within, the superior research objective is to explore and to cover quantitatively the whole process cycle including CAS/CAD – rapid prototyping – physical prototype – modification – reverse engineering.

By establishing a Design and Styling center (CA-Lab) at the department of computer integrated design (DiK) a working environment has been initialised which offers the tools and methods for fundamental research and advanced teaching activities.

Contact: Dipl.-Ing. Jürgen Rambo
rambo@dik.tu-darmstadt.de
PACE – Collaborative Engineering

Today's market situation is characterized by global acting enterprises, which push world wide distributed product development over country borders, time zones and cultures. Therefore intense and effective communication is needed. Competing on national as well as on international markets, these enterprises are forced to introduce their products faster to the market than ever before. The costumer demands for innovative solutions combined with attractive styling. To meet these demands enterprises need to find new concepts of product development.

Global Design requires more complex communication, concurrent processes and high sophisticated project management. Beside the classic fields of CAD/CAM/CAE computer aided processes conquer more and more other areas like Engineering Communication and Engineering Collaboration. But still too many islands need to be brought together. There is still no synchronous collaboration. More and more enterprises exchange data in fixed intervals and therefore reach their goals step by step. But even though these departments need to sync once in a while they are still working independently, often on different hard- and/or software environments in between.

Therefore Collaborative Engineering offers new ways of thinking. Development teams acting internally in different locations as well as across enterprise borders, work together in a single environment. Upcoming challenges can be discussed early and problems can be solved using tools offered within this single environment. Digital tools can also reduce cost by reducing travel expenses.

To research efficient methods of cooperative product development over time zones, language barriers and cultures, strong partners and appropriate equipment is
needed. Technische Universität Darmstadt (Germany) was able to fulfill those needs by contracting with Virginia Tech University (USA) over the PACE Program.

At the beginning several work packages were identified to cut the workload in pieces:

- Installation of an appropriate project environment with unified hard- and software (WP1)
- Design of a concept for synchronization (WP2)
- Conception and execution of a common training class (WP3)
- Evaluation (WP4)

In the 4th Quarter of 2005, shortly before finishing the project, two additional partners could be integrated in the project set up earlier; Howard University (USA) and ITESM Monterrey (Mexico). This proofed the scalability of the concept found.

Contact: Dipl.-Ing. Arndt Ufer
ufer@dik.tu-darmstadt.de
PACE – Virtual Machine Tool

The significant way to launch machine tools successfully to market is to achieve an effective innovation gap compared to the competitors. However, successful dissociation can be increased with short innovation-cycles, better product quality and short time-to-market. The complexity of machine tools is rising constantly according to the increasing functionality due to high individuality and innovation.

Regarding this, the requirement of an interdisciplinary development platform is increased, with which the processes of machine tools can be accelerated constantly. This platform provides an integration platform for domain specific application systems and can be used as a communication foundation for interdisciplinary teams. Specially, the characteristics and properties of machine tools can be detected in early phases of the machine tool and facilities development and the errors can be eliminated promptly.

Such an environment platform is theoretically possible by using today-existing PDM-Systems. However, this system should be configured according to special requirements of users. Furthermore, this system is essential for an integrated and transparent information flow. But this information flow is supported on roughly granularity level. Normally, this system provides document-based information management.

Then again, the content of this document and the fine granularity dependences of corresponding data are not considered. Therefore, an information model is required for the development of a mechatronic system, which enables semantic bridges between domain-specific models. Similar to product structure a machine tool structure can be derived.
from the PDM-System. In this machine tool stucture all existing partial models can be referenced. On the base of Teamcenter engineering of UGS and with the aid of meta models of current partial models the DiK seeks to represent an entire system and to enable effective analysis and evaluation of machine tool as a mechatronic system. This concept allows a holistic consideration of machine tool. Within Teamcenter Engineering as federate environment the interoperability between different specific application systems on macro-level and the bi-directional association between partial models on micro-level could be realized with this concept.

A digital representation of all characteristical properties of a HSC-Machine tool (Geometry, Material, kinematical and kinetical behaviour) can be implemented by customized Teamcenter Engineering as an integration platform and not only for machine tool development activities.

Contact: Dipl.-Ing. Majid Rezaei
Rezaei@dik.tu-darmstadt.de
PACE – Virtual Product Development
(Partial report Virtual Fuel Cell)

The partial project virtual fuel cell aimed at the simulation of multiphysics phenomena on the basis of a Functional-DMU (F-DMU).

Two chairs of the mechanical engineering department of TU-Darmstadt have participated in this partial project. The department of Thermal and Process engineering (TVT) was to cope with the mathematical description of the physical-chemical processes and derive the computational models. The Department of Computer Integrated Design (DiK) implemented the coupling of the multiphysics-computational domain with a parametric 3D-CAD model. The solid modelling tool NX3 from the PACE-portfolio was employed while the computational domain was modelled by means of Matlab/Simulink. The coupling is realized via a user interface, which automates the data exchange.

![Context Diagram for the Interface Application](image)

The user interface was conceptualized as a stand-alone application that communicates with the user through a graphical interface. The CAx –applications run asynchronous to and independent of the application. The coupling of the parametric CAD-model is carried out through an implicit access to the respective CAx-applications. So it is possible to regard multiple simulation aspects of a fuel cell by initiating each with a different computational model. Alternatively, a single computational model can be employed for different fuel cell types. This architecture enables embedding further 3D-CAD systems as well as simulation tools with different emphasis.

The implementation resides on a fully parametric NX3 model. The geometric model is enhanced by physical and chemical properties, which are required for the computation. Later on they are assigned to the simulation parameters. The simulation model constitutes a calorific value analysis for the fuel cell stacks. Material properties,
geometry relevant parameters and information about the product structure are already defined in the NX3 model. They are derived and then forwarded to the simulation model. The user-defined parameters and the remaining values, such as domain specific constants are contained in the respective *.m-files. A control script, invoked by the graphical user interface, calls each *.m-file into the simulation.

The parameters of the geometric model are read in by an NX/Open-API program, figure 2 "Run API (I)". In the next step, the recorded parameter file is selected by “Select Geometric Data File”, (II), whereupon parameters are shown on the left-upper window. The user could modify the read in parameters, (III). Further parameters could be defined as well. Surface density of the membrane and the amount of stacks are exemplarily realized here, (IV). The saved expressions can be inputted into the Matlab program in the next step "Select Matlab Engine File", (V). The output directory for the memory reinforcement is defined by "Select Output File" (VI). Finally, the computation can be executed, (VII). The result is then presented in form of an optional format in the results window, graphical in the following case.

GUI, Java Application, Simulation Process

The results of this project address the core subjects of the further research activities. A concrete basis has been established for a deep integration of chemical-physical computational domains into the geometrical domain. Based on these results a concept for the the integration of the multiphysics domain could be developed in a next step. The fuel cell is an appropriate case study to extend the concept from a product specific approach to a generic one.

Contact: Orkun Yaman, M.Sc
yaman@dik.tu-darmstadt.de
ProSTEP iViP Association Projects Group Collaborative Project Management „CPM“

The ProSTEP iViP Association project group “Collaborative Project Management” (CPM) has been set up on the initiative of the automotive industry in the year 2004. Since that time the DiK is a member of that group.

The overall aim of the CPM project is the optimization of project management across partner enterprises in the product development process of the automotive industry, focussed on the areas time-, task- and communication-management. The results of this project work will be considered in a ProStep iViP recommendation.

The aims of this recommendation are:

- Common understanding of documentation during project activities between suppliers or development partners and OEMs, focused on the areas time, task and communication management.
- Exchange of project information like schedules and activity lists between OEMs and suppliers via neutral interfaces.
- Attention for project changes and consequences as well on supplier as on OEM side.
- Synchronization of coupled processes enabling cross-enterprise multi-project reporting and control with up-to-date project information.

For this recommendation, a reference model for collaboration with adjusted processes, roles, methods, tasks, information content, language and culture will be developed. The recommendation explicitly excludes project management within the involved enterprises.
In 2005 the following project phases were successfully passed:

- Detailing scope,
- Viewing of relevant processes,
- Developing a rough reference model and
- Preparing pilot scenarios.

The planning for 2006 is divided into two parts. The first part will be the validation of the recommendation with pilot scenarios. In the second phase a neutral data model for the exchange of project information in collaborative projects will be developed.

Contact: Dipl.-Wirtsch.-Ing. Pamela Stöcker
stoecker@dik.tu-darmstadt.de
The DiK is member of the VDA and ProSTEP iViP association joint project group „Collaborative Product Visualization - CPV“. Aim of the project group is the harmonization of the visualization data exchange in cross-enterprise applications. Therefore existing and planned processes will be analyzed. Furthermore ways of exchanging 3D visualization data will be analyzed.

In a second step pilot scenarios based on the analysis results will be developed. The different scenarios will be implemented by members of the project group. The thus gained experience will result in a VDA – guideline.

Based on that the following work packages are defined:

- Development of an interview guideline (already done): A uniform interview guideline is necessary for the process analysis and the following evaluation of the results.
- Process analysis (already done): As basis for the planned VDA guideline processes of visualization data exchange between several companies are analyzed and recorded.
- Development of pilot scenarios (already done): Subsequent to the process analysis several pilot scenarios based on different data formats and applications are developed. Based on these pilot scenarios a neutral reference process will be developed.
- Implementation of pilot scenarios (on-going): In cross-enterprise pilots scenarios are implemented and evaluated. Experiences are recorded.
Development and release of a VDA guideline: Built on the reference process and experiences from the pilot scenarios a VDA guideline will be developed and published.

Contact: Dipl.-Ing. Arndt Ufer
 ufer@dik.tu-darmstadt.de
 Dipl.-Ing. Jens Malzacher
 malzacher@dik.tu-darmstadt.de
ProSTEP iViP Association Project Group SIMPDM

The DiK is member of the ProSTEP iViP association’s project group „Integration of Simulation and Computation in a PDM Environment - SimPDM“. The objective of the project group is to develop a common solution for the integration of simulation and computation in a PDM environment together with users, system vendors and research institutes involved in the areas of product data management and simulation/computation.

The project group exists with broad industrial participants since 2003. Based on recent results the following work packages are defined and achieved:

- Developing a common comprehension of PDM in the area of computation and simulation,
- Defining reference processes for the integration of simulation and computation in the product development process,
- Specification of the principal requirements for the integration,
- Definition of the simulation and computation domains and identification of the software tools of the respective domains,
- Definition of the requirements relating to CAE model structures and the influences on these structures,
- Definition of the required elements and attributes for the CAE model structures,
- Creation of partial models for the defined domains,
- Creation of a concept for integrating the computational domains,
- Creation of a metadata model,
- Definition of a requirement specification for the integration,
- Creation of a first demonstrator,
Developing an integrated metadata model to map the CAE-model structure in PDM systems,

Designing a concept for the release management within the CAE-model structure.

The following main work packages are planned:

- Conceptual design of a method for the parameter synchronisation of the product and CAE-model structure,
- Connection of CAE systems to xDM systems,
- Creation Recommended Practises,
- Support of the reference implementation,
- Extension of the requirement specifications by documenting the requirements, the developed data models, the integration concept and the concept for parameter synchronization and
- Organization and support of the SimPDM Review Circle.

Contact: Dipl.-Ing. Jens Malzacher
malzacher@dik.tu-darmstadt.de
Process chain CAD-NC on the basis of casting product data

The Heidelberger Druckmaschinen AG is situated in a transposition phase regarding the CAD software used in product development. The former used CAD system CATIA V4 is substituted by Unigraphics NX. In this context of changing the CAD system the digital 3D representation of the product should be provided covering the whole process chain. A process chain which is currently not represented through 3D CAD models is CAD-NC. Hereby the focus is the creation of three-dimensional casting product data. Within this project the first phase of the process chain should be researched and the generation of casting product data based on the design models should be evaluated.

A detailed investigation of the process chain from the design models to the casting models show that already the design models should be created in a specific way to fit different requirements regarding the generation of casting models. Currently, the following problems occur by the casting models at Heidelberger Druckmaschinen:

- The design process provides currently only the 3D geometry of the design models which doesn´t cover the requirements of the casting process.
- The digital representation of the casting process can be covered by the casting models generated on basis of the design model.
- For the numerically controlled finishing of cast parts the appropriate NC-data has to be generated based on the cast model.

Therefore it the main project target should be:

Evaluating an effective concept of restructuring the process chain in a way that the casting models can be generated using the design models. Additionally the evaluation of automatisation potential. The generation of casting models should occur in a standardized and documented way based on a casting-oriented design process.

Contact: Dipl.-Wirtsch.-Ing. Michael Thel
thel@dik.tu-darmstadt.d
Collaborative Research Center 666
Integral Sheet Metal Design with Higher Order Bifurcations - (Design, Manufacturing, Evaluation)

The new Collaborative Research Center (CRC) 666 - Integral Sheet Metal Design with Higher Order Bifurcations – is running since July 2005. Its goals are the development of methods and techniques that support the optimised design of bifurcated integral sheet metal parts.

From July 2005 to March 2009 there have been allotted altogether 8.415.900 € for the CRC 666 by the “Deutsche Forschungsgemeinschaft”. The overall, long-term research objectives and cognitions of CRC 666 are as follows:

- Acquisition of methods for the systematical development and verification of bearing strength of bifurcated integral sheet metal parts,
- Manufacturing of bifurcated integral sheet metal parts and
- Evaluation and optimisation of bifurcated integral sheet metal parts concerning multifunctional profiles.

The department of Computer Integrated Design participates in the CRC 666 in two subprojects, called A4 and A5, which are described below.

As kick-off-meeting a workshop was held in Haigerloch, Germany, in November 2005. In addition, two workgroups, called “virtual product development” and “real product development”, have been founded to serve as coordinators of cooperation. The department of Computer Integrated Design is leading the workgroup “virtual product development”. Furthermore, proposals for publications and industrial cooperation were discussed in 2005 and a palpable schedule has been set up.

For public presentation and internal communication purposes, an official website was installed, which can be found at http://www.sfb666.tu-darmstadt.de

Contact:
Dipl.-Ing. Marco Kormann
kormann@dik.tu-darmstadt.de
Dipl.-Wirtsch.-Ing. Thomas Rollmann
rollmann@dik.tu-darmstadt.de
Dipl.-Infom. Zhenyu Wu
wu@dik.tu-darmstadt.de
Collaborative Research Center 666
Subproject A4 - modeling techniques

One challenge in modeling of products that correspond to the production methodology of integral sheet metal design with higher order bifurcations is the integration of mathematically generated solutions. These solutions differ in cross-section geometry as well as the locations of bifurcations and joint patches. The result of a mathematical optimization prior to modeling is a set of solution trees, which have to be reduced to the most suitable alternative. In many cases the sheet metal with bifurcations of higher order has to be combined with other parts in one assembly, which can induce extra boundary conditions or modifications of the geometry or topology of the algorithm-based solution.

Algorithmic modeling of bifurcatied sheet metal parts

A 3D-representation enables the engineer to certify his selection decision. To gain a 3D-model of the prospective product, new modeling functions have to be generated in available 3D-CAD systems.

Conventional modeling functions in 3D-CAD systems are not appropriate to completely integrate all requirements to present and represent branched sheet metal products in a virtual product development system. The new scientific approach is to develop and implement new design methodologies and tools in 3D-CAD systems for geometric modeling of integrated sheet metal with higher bifurcation order, especially on the basis of algorithmic generated solution trees.

In 2005, the established CAD-Systems were assayed for their existing possibilities of virtual sheet metal forming and evaluated for their ability to represent bifurcated sheet metal parts.

Contact: Dipl.-Ing. Marco Kormann
kormann@dik.tu-darmstadt.de
Collaborative Research Center 666
Subproject A5 - Development of an information model

The main goal of the subproject A5 is to create one holistic information model concerning the entire product creation process. It will cover all purposes of information and data management as well as exchange, comfortably operated by a Graphical User Interface. Furthermore, the results of other subprojects, e.g. optimization algorithms, will be implemented. The research assistants of the CRC 666 are enabled to collaborate efficiently with each other across the borders of the different scientific disciplines by sharing their data without cross-media conversion.

This information model will state an integrated approach for the complete process chain, starting with the task description up to production and evaluation. The algorithmic generation of unrolling solutions for the sheet metal product is based on a standardized description of the task, requested specifications and the features of the prospective product. Thus, the resulting set of solutions is shortened through several boundary conditions, e.g. limitations of the production process. This solution tree and all standardized descriptions of the task, boundary limitations all connections between them have to be represented in the information model. This is a complete new scientific approach, which has to be studied. By deriving a model instance form the solution tree, an integrated product and process model can be synthesized. All involved project members can use this implemented information model to cooperate in a standardized way with high efficiency and performance.

Structure of the information model

The information model contains all necessary data for the succeeding production process. In a first step the flow of information within the product development process was
analyzed regarding the existing proposals. The results of this evaluation were specified in SADT and UML (Use-Case-diagrams). The next steps in the year 2006 are to establish an information exchange standard on the basis of XML and to establish interfaces to certain software kernels, e.g. of 3D CAD systems.

Contact: Dipl.-Wirtsch.-Ing. Thomas Rollmann rollmann@dik.tu-darmstadt.de
Dipl.-Infom. Zhenyu Wu wu@dik.tu-darmstadt.de
Transfer-Unit 55 C5 – Life Cycle Design based on E-Business Solutions

The producers of energy-using products should be supported during the completion of the environment relevant EU directives and thus enabled to execute Life Cycle Design. The directives, covered in this project, are:

- "Directive on waste electrical and electronic equipment" (WEEE) and "Directive on the Restriction of certain Hazardous Substances in electrical and electronic equipment" (RoHS) and
- Directives for the global product-related environmental protection.

These directives follow the principle of product’s responsibility, i.e. producer’s responsibility. Producers are responsible for their products during the entire life cycle. A life cycle is the span from the material production up to the disposal. That is why the product development requires a comprehensive life cycle consideration.

The CRC 392 methods and tools, concerning the development of environmentally-friendly products, offer a huge potential in combination with the extensive technical and economic life cycle consideration, an SAP system holds. The development of a feasible solution is possible. With such a solution a standard compliance of the given directives can be acquired. The next goal is the integration of the life cycle design into the daily enterprise work. The integration comprises the CRC results (methods and tools) such as mySAP Business Suite.
Thus the companies are empowered to carry out a product compliance based on the mentioned directives. Along with the environmental assessment of the products throughout the life cycle (establishing the environmental profile based on the EuP), this compliance contains also a WEEE/RoHS check, methods and instruments for the product optimisation and the ambition to satisfy the requirements of the directives.

In this project the Institute of Production Management, Technology and Machine Tools (PTW) as well as the Department of Computer Integrated Design (DiK) collaborate with the TechniData AG. The DiK is responsible for the analysis of the European and world-wide environmental legislation.

Contact: Dipl.-Wirtsch.-Ing. Pamela Stöcker stoecker@dik.tu-darmstadt.de
TUD-Ultramarathon 2005

Related to the sport event „TUD in Bewegung“ the initials DiK stand for “Dauerlauf im Kreis”. Ultramarathon is one of the famous competitions of this event. Within this competition a team has to split a distance of 42km to at least 11 runners.

With a total time of 2:52:30 h the DiK-team was not only the winner of the Ultramarathon 2005 but also the first team that broke through the 3:00:00 h mark.

We are looking forward to defend the trophy at the Ultramarathon 2006.

Contact: Members of Team DiK
Dissertationen / Doctor Theses

Regina Beutel
Methodische Langzeitbewahrung ingenieurtechnischen Produktwissens in rechnergenerierten virtuellen 3D-Gestaltvisualisierungen
Forschungsberichte aus dem Fachgebiet Datenverarbeitung in der Konstruktion, Technische Universität Darmstadt, Shaker Verlag, Aachen 2005

Olaonipekun Bernard Faneye
Product Life Cycle Prognosis and Modeling in a Computer-aided Environment
Forschungsberichte aus dem Fachgebiet Datenverarbeitung in der Konstruktion, Technische Universität Darmstadt, Shaker Verlag, Aachen 2005

Claus Heeg
Entwicklung eines Produktmodells zur designorientierten Gestaltanalyse
Forschungsberichte aus dem Fachgebiet Datenverarbeitung in der Konstruktion, Technische Universität Darmstadt, Shaker Verlag, Aachen 2005

Sebastian Leibrecht
Information Model for the Integration of Ecological Assessments into Virtual Product Development
Forschungsberichte aus dem Fachgebiet Datenverarbeitung in der Konstruktion, Technische Universität Darmstadt, Shaker Verlag, Aachen 2005

Frank Schöfer
Nutzung von Geometriemodellen zur Absicherung von Software in mechatronischen Produkten
Forschungsberichte aus dem Fachgebiet Datenverarbeitung in der Konstruktion, Technische Universität Darmstadt, Shaker Verlag, Aachen 2005

Ullrich Pfeifer-Silberbach
Ein Beitrag zum Monitoring des Reifegrades in der Entwicklung eines Produkts
Forschungsberichte aus dem Fachgebiet Datenverarbeitung in der Konstruktion, Technische Universität Darmstadt, Shaker Verlag, Aachen 2005
Veröffentlichungen / Publications

Anderl, R. (2005)
PLM- Einführung, Übersicht, Normungsrelevanz
34. Konferenz Normungspraxis – Product Lifecycle Management – Prozesse, Kosten, Rechtssicherheit, Berlin, Wien, Zürich, Beuth Verlag

Collaborative Engineering

Anderl, R.; Pfouga, A; Rezaei, M. (2005)
A new holistic approach for digital and virtual manufacturing
International PACE Forum Digital Manufacturing, Darmstadt

Virtual, Physical and Parametric Prototypes in the Product Development Process
Proceedings ProSTEP iViP Science Days 2005, Darmstadt, ProSTEP iViP e.V.

Collaborative Product Visualization
Proceedings ProSTEP iViP Science Days 2005, Darmstadt, ProSTEP iViP e.V.

Beyond CAST – a new approach to create, present and manage online Tutorial content
PACE Annual Meeting 2005, Toluca (Mexico)

Unternehmensübergreifender Visualisierungsdaten- und Strukturdatenaustausch
Produkt Daten Journal Nr. 1 05/2005, Darmstadt, ProSTEP iViP e. V. (Hrsg.)

Analyse des unternehmensübergreifender Visualisierungsdaten- und Strukturdatenaustauschs
Whitepaper, DiK, Darmstadt, ProSTEP iViP (Hrsg.)
Collaborative Project Engineering
Engineering 2010 – Setting the Course for Innovative Engineering, Studie, Darmstadt, ProSTEP iviP Verein

Virtueller Test von Softwarefunktionen durch Kopplung mit der Produktgeometrie
3. Paderborner Workshop Intelligente Mechatronische Systeme, Heinz Nixdorf Institut, Paderborn, HNI

Erfahrungen am Beispiel multimedialer Lehrveranstaltungen im Maschinenbau
Bildung und Technik, Band 4, Studieren im Cyberspace, Münster, LIT Verlag

Neue Methoden und Werkzeuge zur softwaresystemausbildung und -weiterbildung
Thema Forschung, E-Learning, Technische Universität Darmstadt, Darmstadt, Verlag für Marketing und Kommunikation GmbH
Mitarbeiter / Staff 2005

Fachgebietsleitung
Prof. Dr.-Ing. Reiner Anderl
Email: anderl@dik.tu-darmstadt.de
Telefon: 06151-16 6000

Sekretariat
Monika Mayer
Email: mayer@dik.tu-darmstadt.de
Telefon: 06151-16 6001
Monika Kammer (ehem. SFB-Sekretärin)

Technische Angestellte
Jürgen Berberich
Email: berberich@dik.tu-darmstadt.de
Telefon: 06151-16 5484
David Fischer
Email: fischer@dik.tu-darmstadt.de
Telefon: 06151-16 5484

Auszubildende
Christian Roth
Email: roth@dik.tu-darmstadt.de
Telefon: 06151-16 5484
Henning Stecher
Email: stecher@dik.tu-darmstadt.de
Telefon: 06151-16 5484

Wissenschaftliche Mitarbeiter
Dipl.-Ing. Marc Bierwerth
Email: bierwerth@dik.tu-darmstadt.de
Telefon: 06151-16 5026
Dipl.-Ing. Lars Klug
Email: klug@dik.tu-darmstadt.de
Telefon: 06151-16 6584
Dipl.-Ing. Marco Kormann
Email: kormann@dik.tu-darmstadt.de
Telefon: 06151-16 6583
Dipl.-Ing. Jens Malzacher
Email: malzacher@dik.tu-darmstadt.de
Telefon: 06151-16 5145
Dipl.-Wirtsch.-Ing. Katharina Melk (Erziehungsurlaub)
Dipl.-Ing. Alain Pfouga
Email: pfouga@dik.tu-darmstadt.de
Telefon: 06151-16 5145
Dipl.-Ing. Tri-Ngoc Pham-Van
Email: phamvan@dik.tu-darmstadt.de
Telefon: 06151-16 5441
Dipl.-Ing. Kristian Platt
Email: platt@dik.tu-darmstadt.de
Telefon: 06151-16 5445
Dipl.-Ing. Jürgen Rambo
Email: rambo@dik.tu-darmstadt.de
Telefon: 06151-16 6466
Dipl.-Ing. Majid Rezaei
Email: rezaei@dik.tu-darmstadt.de
Telefon: 06151-16 5441
Dipl.-Wirtsch.-Ing. Thomas Rollmann
Email: rollmann@dik.tu-darmstadt.de
Telefon: 06151-16 3894
Dipl.-Ing. Daniel Spieß
Email: spiess@dik.tu-darmstadt.de
Telefon: 06151-16 6850
Dipl.-Wirtsch.-Ing. Pamela Stöcker
Email: stoecker@dik.tu-darmstadt.de
Telefon: 06151-16 5445
Dipl.-Wirtsch.-Ing. Michael Thel
Email: thel@dik.tu-darmstadt.de
Telefon: 06151-16 6583
Dipl.-Ing. Arndt Ufer
Email: ufer@dik.tu-darmstadt.de
Telefon: 06151-16 6466
Dipl.-Innform. Zhenyu Wu
Email: wu@dik.tu-darmstadt.de
Telefon: 06151-16 6850
M.Sc. Orkun Yaman
Email: yamann@dik.tu-darmstadt.de
Telefon: 06151-16 5026